【題目】某種產(chǎn)品特約經(jīng)銷商根據(jù)以往當(dāng)?shù)氐男枨笄闆r,得出如圖該種產(chǎn)品日需求量的頻率分布直方圖.

(1)求圖中a的值,并估計(jì)日需求量的眾數(shù);
(2)某日,經(jīng)銷商購(gòu)進(jìn)130件該種產(chǎn)品,根據(jù)近期市場(chǎng)行情,當(dāng)天每售出1件能獲利30元,未售出的部分,每件虧損20元.設(shè)當(dāng)天的需求量為x件(100≤x≤150),純利潤(rùn)為S元.
(。⿲表示為x的函數(shù);
(ⅱ)根據(jù)直方圖估計(jì)當(dāng)天純利潤(rùn)S不少于3400元的概率.

【答案】
(1)解:由直方圖可知:(0.013+0.015+0.017+a+0.030)×10=1,∴a=0.025,

,

∴估計(jì)日需求量的眾數(shù)為125件;


(2)解:(。┊(dāng)100≤x<130時(shí),S=30x﹣20(130﹣x)=50x﹣2600,

當(dāng)130≤x≤150時(shí),S=30×130=3900,

;

(ⅱ)若S≥3400由50x﹣2600≥3400得x≥120,

∵100≤x≤150,

∴120≤x≤150,

∴由直方圖可知當(dāng)120≤x≤150時(shí)的頻率是(0.030+0.025+0.015)×10=0.7,

∴可估計(jì)當(dāng)天純利潤(rùn)S不少于3400元的概率是0.7.


【解析】(1)根據(jù)所有小矩形的面積之和為1,求得第四組的頻率,再根據(jù)小矩形的高= 求a的值;(2)利用分段函數(shù)寫出S關(guān)于x的函數(shù);根據(jù)S≥3400得x的范圍,利用頻率分布直方圖求數(shù)據(jù)在范圍內(nèi)的頻率及可得概率.
【考點(diǎn)精析】關(guān)于本題考查的頻率分布直方圖,需要了解頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過(guò)作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知圓C1:(x+1)2+y2=1,圓C2:(x﹣3)2+(y﹣4)2=1.
(Ⅰ)若過(guò)點(diǎn)C1(﹣1,0)的直線l被圓C2截得的弦長(zhǎng)為 ,求直線l的方程;
(Ⅱ)圓D是以1為半徑,圓心在圓C3:(x+1)2+y2=9上移動(dòng)的動(dòng)圓,若圓D上任意一點(diǎn)P分別作圓C1的兩條切線PE,PF,切點(diǎn)為E,F(xiàn),求 的取值范圍;
(Ⅲ)若動(dòng)圓C同時(shí)平分圓C1的周長(zhǎng)、圓C2的周長(zhǎng),則動(dòng)圓C是否經(jīng)過(guò)定點(diǎn)?若經(jīng)過(guò),求出定點(diǎn)的坐標(biāo);若不經(jīng)過(guò),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方體ABCD﹣A1B1C1D1的棱長(zhǎng)為1,N為CD1中點(diǎn),M為線段BC1上的動(dòng)點(diǎn),(M不與B,C1重合)有四個(gè)命題:
①CD1⊥平面BMN;
②MN∥平面AB1D1;
③平面AA1CC1⊥平面BMN;
④三棱錐D﹣MNC的體積有最大值.
其中真命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的頂點(diǎn)A(1,3),AB邊上的中線CM所在直線方程為2x﹣3y+2=0,AC邊上的高BH所在直線方程為2x+3y﹣9=0.求:
(1)頂點(diǎn)C的坐標(biāo);
(2)直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某兒童公園設(shè)計(jì)一個(gè)直角三角形游樂(lè)滑梯,AO為滑道,∠OBA為直角,OB=20米,設(shè)∠AOB=θrad,一個(gè)小朋友從點(diǎn)A沿滑道往下滑,記小朋友下滑的時(shí)間為t秒,已知小朋友下滑的長(zhǎng)度s與t2和sinθ的積成正比,當(dāng) 時(shí),小朋友下滑2秒時(shí)的長(zhǎng)度恰好為10米.
(1)求s關(guān)于時(shí)間t的函數(shù)的表達(dá)式;
(2)請(qǐng)確定θ的值,使小朋友從點(diǎn)A滑到O所需的時(shí)間最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+2xsinθ﹣1,x∈[﹣ , ].
(1)當(dāng) 時(shí),求函數(shù)f(x)的最小值;
(2)若函數(shù)f(x)在x∈[﹣ , ]上是單調(diào)增函數(shù),且θ∈[0,2π],求θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2x
(1)解方程f(log4x)=3;
(2)已知不等式f(x+1)≤f[(2x+a)2](a>0)對(duì)x∈[0,15]恒成立,求實(shí)數(shù)a的取值范圍;
(3)存在x∈(﹣∞,0],使|af(x)﹣f(2x)|>1成立,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)y=f(x)的定義域?yàn)镈,值域?yàn)锳,如果存在函數(shù)x=g(t),使得函數(shù)y=f[g(t)]的值域仍是A,那么稱x=g(t)是函數(shù)y=f(x)的一個(gè)等值域變換.
(1)判斷下列函數(shù)x=g(t)是不是函數(shù)y=f(x)的一個(gè)等值域變換?說(shuō)明你的理由; ① ;
②f(x)=x2﹣x+1,x∈R,x=g(t)=2t , t∈R.
(2)設(shè)f(x)=log2x的定義域?yàn)閤∈[2,8],已知 是y=f(x)的一個(gè)等值域變換,且函數(shù)y=f[g(t)]的定義域?yàn)镽,求實(shí)數(shù)m、n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件樣本,測(cè)量這些樣本的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得如下頻數(shù)分布表:

質(zhì)量指標(biāo)
值分組

[75,85)

[85,95)

[95,105)

[105,115)

[115,125]

頻數(shù)

6

26

38

22

8

則樣本的該項(xiàng)質(zhì)量指標(biāo)值落在[105,125]上的頻率為

查看答案和解析>>

同步練習(xí)冊(cè)答案