【題目】如圖,正方體ABCD﹣A1B1C1D1的棱長為1,N為CD1中點,M為線段BC1上的動點,(M不與B,C1重合)有四個命題:
①CD1⊥平面BMN;
②MN∥平面AB1D1;
③平面AA1CC1⊥平面BMN;
④三棱錐D﹣MNC的體積有最大值.
其中真命題的序號是 .
科目:高中數學 來源: 題型:
【題目】若實數a,b,c滿足loga3<logb3<logc3,則下列關系中不可能成立的( )
A.a<b<c
B.b<a<c
C.c<b<a
D.a<c<b
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲乙兩種商品在過去一段時間內的價格走勢如圖所示,假設某人持有資金120萬元,他可以在t1至t4的任意時刻買賣這兩種商品,且買賣能夠立即成交(其他費用忽略不計),那么他持有的資金最多可變?yōu)椋?/span> )
A.120萬元
B.160萬元
C.220萬元
D.240萬元
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】假設關于某設備的使用年限x和所支出的維修費用y(萬元),有如下的統(tǒng)計資料:
x | 1 | 2 | 3 | 4 | 5 |
y | 5 | 6 | 7 | 8 | 10 |
由資料可知y對x呈線性相關關系,且線性回歸方程為 ,請估計使用年限為20年時,維修費用約為( )
A.26.2
B.27
C.27.6
D.28.2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C:y2=2px上一點 到焦點F距離為1,
(1)求拋物線C的方程;
(2)直線l過點(0,2)與拋物線交于M,N兩點,若OM⊥ON,求直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓W: ,過原點O作直線l1交橢圓W于A,B兩點,P為橢圓上異于A,B的動點,連接PA,PB,設直線PA,PB的斜率分別為k1 , k2(k1 , k2≠0),過O作直線PA,PB的平行線l2 , l3 , 分別交橢圓W于C,D和E,F(xiàn).
(1)若A,B分別為橢圓W的左、右頂點,是否存在點P,使∠APB=90°?說明理由.
(2)求k1k2的值;
(3)求|CD|2+|EF|2的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直平行六面體ABCD﹣A1B1C1D1中,底面ABCD是菱形,∠DAB=60°,AC∩BD=O,AB=AA1=1.
(1)求證:OC1∥平面AB1D1
(2)求證:平面AB1D1⊥平面ACC1A1
(3)求三棱錐A1﹣AB1D1的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種產品特約經銷商根據以往當地的需求情況,得出如圖該種產品日需求量的頻率分布直方圖.
(1)求圖中a的值,并估計日需求量的眾數;
(2)某日,經銷商購進130件該種產品,根據近期市場行情,當天每售出1件能獲利30元,未售出的部分,每件虧損20元.設當天的需求量為x件(100≤x≤150),純利潤為S元.
(ⅰ)將S表示為x的函數;
(ⅱ)根據直方圖估計當天純利潤S不少于3400元的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com