分別過橢圓
x2
a2
+
y2
b2
=1
的左、右焦點F1、F2所作的兩條互相垂直的直線l1、l2的交點在此橢圓的內(nèi)部,則此橢圓的離心率的取值范圍是
(0,
2
2
)
(0,
2
2
)
分析:根據(jù)橢圓內(nèi)存在點P使得直線PF1與直線PF2垂直,可得|OP|=c<b,從而可求橢圓離心率e的取值范圍;
解答:解:由題意可知橢圓內(nèi)存在點P使得直線PF1與直線PF2垂直,可得|OP|=c<b,
所以c2<b2=a2-c2,∴e∈(0,
2
2
)

故答案為:(0,
2
2
)
點評:本題考查橢圓的幾何性質(zhì),離心率的求法,考查計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,F(xiàn)1、F2分別為橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的焦點,橢圓的右準線l與x軸交于A點,若F1(-1,0),且
AF1
=2
AF2

(Ⅰ)求橢圓的方程;
(Ⅱ)過F1、F2作互相垂直的兩直線分別與橢圓交于P、Q、M、N四點,求四邊形PMQN面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若AB是過橢圓
x2
a2
+
y2
b2
=1(a>b>0)
中心的一條弦,M是橢圓上任意一點,且AM,BM與坐標軸不平行,kAM,kBM分別表示直線AM,BM的斜率,則kAM•kBM=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣元三模)已知A、B、C三點均在橢圓M:
x2
a2
+y2=1
(a>1)上,直線AB、AC分別過橢圓的左右焦點F1、F2,當
AC
• 
F1F2
=0
,有9
AF1
AF2
 =
AF1
2

(I)求橢圓M的方程;
(II)設(shè)P是橢圓M上任意一點,求
PF1
PF2
的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•成都模擬)已知F1、F2分別為橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左右焦點,經(jīng)過橢圓上第二象限內(nèi)任意一點P的切線為l,過原點O作OM∥l交F2P于點M,則|MP|與a、b的關(guān)系是( 。

查看答案和解析>>

同步練習冊答案