【題目】已知定義在上的函數(shù),有下列說法:

1)函數(shù)滿足則函數(shù)在上不是單調(diào)減函數(shù);

2)對任意的 函數(shù)滿足則函數(shù)在上是單調(diào)增函數(shù);

3)函數(shù)滿足則函數(shù)是偶函數(shù);

4)函數(shù)滿足則函數(shù)不是奇函數(shù).

其中,正確的說法是________(填寫相應的序號).

【答案】1

【解析】

根據(jù)函數(shù)的單調(diào)性和奇偶性的定義進行判斷即可.

1)如果是上單調(diào)減函數(shù),一定能,所以本說法正確;

2,只能說明兩個數(shù)相差1時,它們的函數(shù)值的大小關系,不能判斷任意兩個不等實數(shù),它們的函數(shù)值的關系,所以本說法不正確;

3)只有當任意的數(shù),有,才能說明函數(shù)是偶函數(shù),若干個特例不能說明是偶函數(shù),所以本說法不正確;

4)當時,函數(shù)有可能是奇函數(shù),所以本說法不正確.

故答案為:(1

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線C的極坐標方程為.

(1)求曲線的普通方程和的直角坐標方程;

(2)分別交于點,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,平面平面為等邊三角形,,分別為,的中點.

(1)求證:平面

(2)求證:平面平面;

(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,,上一點,,且,則__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線過點,且焦點為F,直線l與拋物線相交于A,B兩點.

⑴求拋物線C的方程,并求其準線方程;

為坐標原點.,證明直線l必過一定點,并求出該定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)當時,求函數(shù)的單調(diào)遞增區(qū)間;

2)對于,為任意實數(shù),關于的方程恰好有兩個不等實根,求實數(shù)的值;

3)在(2)的條件下,若不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐,

,證明平面平面;

當四棱錐的體積為,且二面角為鈍角時,求直線與平面所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)

已知拋物線C的方程Cy2="2" p xp0)過點A1,-2.

I)求拋物線C的方程,并求其準線方程;

II)是否存在平行于OAO為坐標原點)的直線l,使得直線l與拋物線C有公共點,且直線OAl的距離等于?若存在,求出直線l的方程;若不存在,說明理由。

【答案】I)拋物線C的方程為,其準線方程為II)符合題意的直線l 存在,其方程為2x+y-1 =0.

【解析】

試題()求拋物線標準方程,一般利用待定系數(shù)法,只需一個獨立條件確定p的值:(-222p·1,所以p2.再由拋物線方程確定其準線方程:,()由題意設,先由直線OA的距離等于根據(jù)兩條平行線距離公式得:解得,再根據(jù)直線與拋物線C有公共點確定

試題解析:解 (1)將(1,-2)代入y22px,得(-222p·1,

所以p2

故所求的拋物線C的方程為

其準線方程為

2)假設存在符合題意的直線,

其方程為

因為直線與拋物線C有公共點,

所以Δ48t≥0,解得

另一方面,由直線OA的距離

可得,解得

因為-1[,+),1∈[,+),

所以符合題意的直線存在,其方程為

考點:拋物線方程,直線與拋物線位置關系

【名師點睛】求拋物線的標準方程的方法及流程

1)方法:求拋物線的標準方程常用待定系數(shù)法,因為未知數(shù)只有p,所以只需一個條件確定p值即可.

2)流程:因為拋物線方程有四種標準形式,因此求拋物線方程時,需先定位,再定量.

提醒:求標準方程要先確定形式,必要時要進行分類討論,標準方程有時可設為y2=mxx2=mym≠0).

型】解答
結(jié)束】
22

【題目】已知橢圓的左右焦點與其短軸的一個端點是正三角形的三個頂點,點在橢圓上.

(1)求橢圓的方程;

(2)直線過橢圓左焦點交橢圓于,為橢圓短軸的上頂點,當直線時,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fxR上的奇函數(shù).

1)求a,b的值;

2)判斷并證明fx)的單調(diào)性;

3)若對任意實數(shù)x,不等式f[fx)﹣m]0恒成立,求m的取值范圍.

查看答案和解析>>

同步練習冊答案