【題目】已知定義在上的函數(shù),有下列說法:
(1)函數(shù)滿足則函數(shù)在上不是單調(diào)減函數(shù);
(2)對任意的 函數(shù)滿足則函數(shù)在上是單調(diào)增函數(shù);
(3)函數(shù)滿足則函數(shù)是偶函數(shù);
(4)函數(shù)滿足則函數(shù)不是奇函數(shù).
其中,正確的說法是________(填寫相應的序號).
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線C的極坐標方程為.
(1)求曲線的普通方程和的直角坐標方程;
(2)設分別交于點,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線過點,且焦點為F,直線l與拋物線相交于A,B兩點.
⑴求拋物線C的方程,并求其準線方程;
⑵為坐標原點.若,證明直線l必過一定點,并求出該定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)當時,求函數(shù)的單調(diào)遞增區(qū)間;
(2)對于,為任意實數(shù),關于的方程恰好有兩個不等實根,求實數(shù)的值;
(3)在(2)的條件下,若不等式在恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)
已知拋物線C的方程C:y2="2" p x(p>0)過點A(1,-2).
(I)求拋物線C的方程,并求其準線方程;
(II)是否存在平行于OA(O為坐標原點)的直線l,使得直線l與拋物線C有公共點,且直線OA與l的距離等于?若存在,求出直線l的方程;若不存在,說明理由。
【答案】(I)拋物線C的方程為,其準線方程為(II)符合題意的直線l 存在,其方程為2x+y-1 =0.
【解析】
試題(Ⅰ)求拋物線標準方程,一般利用待定系數(shù)法,只需一個獨立條件確定p的值:(-2)2=2p·1,所以p=2.再由拋物線方程確定其準線方程:,(Ⅱ)由題意設:,先由直線OA與的距離等于根據(jù)兩條平行線距離公式得:解得,再根據(jù)直線與拋物線C有公共點確定
試題解析:解 (1)將(1,-2)代入y2=2px,得(-2)2=2p·1,
所以p=2.
故所求的拋物線C的方程為
其準線方程為.
(2)假設存在符合題意的直線,
其方程為.
由得.
因為直線與拋物線C有公共點,
所以Δ=4+8t≥0,解得.
另一方面,由直線OA到的距離
可得,解得.
因為-1[-,+∞),1∈[-,+∞),
所以符合題意的直線存在,其方程為.
考點:拋物線方程,直線與拋物線位置關系
【名師點睛】求拋物線的標準方程的方法及流程
(1)方法:求拋物線的標準方程常用待定系數(shù)法,因為未知數(shù)只有p,所以只需一個條件確定p值即可.
(2)流程:因為拋物線方程有四種標準形式,因此求拋物線方程時,需先定位,再定量.
提醒:求標準方程要先確定形式,必要時要進行分類討論,標準方程有時可設為y2=mx或x2=my(m≠0).
【題型】解答題
【結(jié)束】
22
【題目】已知橢圓:的左右焦點與其短軸的一個端點是正三角形的三個頂點,點在橢圓上.
(1)求橢圓的方程;
(2)直線過橢圓左焦點交橢圓于,為橢圓短軸的上頂點,當直線時,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)是R上的奇函數(shù).
(1)求a,b的值;
(2)判斷并證明f(x)的單調(diào)性;
(3)若對任意實數(shù)x,不等式f[f(x)﹣m]0恒成立,求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com