【題目】下列說(shuō)法正確的有_____________(填序號(hào));

①有一個(gè)面是多邊形,其余各面都是三角形,由這些面所圍成的幾何體是棱錐;

②正四面體的棱都相等;

③平行直線的平行投影仍是平行直線;

④由斜二測(cè)畫(huà)法得到的平面圖形直觀圖的面積是原圖形面積的.

【答案】②④

【解析】

根據(jù)多面體的概念,直線的位置關(guān)系,斜二測(cè)畫(huà)法的概念分別進(jìn)行判斷.

正八面體的各個(gè)面都是三角形,但它不是棱錐,①錯(cuò);

正四面體的各面都是正三角形,所有棱都相等,②正確;

要看投影方向,平行直線的平行投影可以是平行直線,也可能重合,還可能是兩點(diǎn).③錯(cuò);

以水平放置的平行四邊形為例,平行四邊形底為,高為,面積為,斜二測(cè)畫(huà)法的直觀圖中,底不變?nèi)匀粸?/span>,高變成與底成的線段,且長(zhǎng)度為原來(lái)的一半,即為,因此直觀圖中的高為,面積為,即,④正確.

故答案為:②④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在原點(diǎn),直線與坐標(biāo)軸的交點(diǎn)是橢圓的兩個(gè)頂點(diǎn).

(1)求橢圓的方程;

(2)若是橢圓上的兩點(diǎn),且滿足,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司共有10條產(chǎn)品生產(chǎn)線,不超過(guò)5條生產(chǎn)線正常工作時(shí),每條生產(chǎn)線每天純利潤(rùn)為1100元,超過(guò)5條生產(chǎn)線正確工作時(shí),超過(guò)的生產(chǎn)線每條純利潤(rùn)為800元,原生產(chǎn)線利潤(rùn)保持不變.未開(kāi)工的生產(chǎn)線每條每天的保養(yǎng)等各種費(fèi)用共100元.用x表示每天正常工作的生產(chǎn)線條數(shù),用y表示公司每天的純利潤(rùn).

(I)寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式,并求出純利潤(rùn)為7700元時(shí)工作的生產(chǎn)線條數(shù).

(II)為保證新開(kāi)的生產(chǎn)線正常工作,需對(duì)新開(kāi)的生產(chǎn)線進(jìn)行檢測(cè),現(xiàn)從該生產(chǎn)線上隨機(jī)抽取100件產(chǎn)品,測(cè)量產(chǎn)品數(shù)據(jù),用統(tǒng)計(jì)方法得到樣本的平均數(shù),標(biāo)準(zhǔn)差,繪制如圖所示的頻率分布直方圖,以頻率值作為概率估計(jì)值.為檢測(cè)該生產(chǎn)線生產(chǎn)狀況,現(xiàn)從加工的產(chǎn)品中任意抽取一件,記其數(shù)據(jù)為X,依據(jù)以下不等式評(píng)判(P表示對(duì)應(yīng)事件的概率)

評(píng)判規(guī)則為:若至少滿足以上兩個(gè)不等式,則生產(chǎn)狀況為優(yōu),無(wú)需檢修;否則需檢修生產(chǎn)線.試判斷該生產(chǎn)線是否需要檢修.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一塊半圓形的空地,直徑米,政府計(jì)劃在空地上建一個(gè)形狀為等腰梯形的花圃,如圖所示,其中為圓心,,在半圓上,其余為綠化部分,設(shè).

1)記花圃的面積為,求的最大值;

2)若花圃的造價(jià)為10/,在花圃的邊、處鋪設(shè)具有美化效果的灌溉管道,鋪設(shè)費(fèi)用為500/米,兩腰、不鋪設(shè),求滿足什么條件時(shí),會(huì)使總造價(jià)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若不等式的解集為,求實(shí)數(shù)的值;

(2)在(1)的條件下,若存在實(shí)數(shù)使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),共享單車已經(jīng)悄然進(jìn)入了廣大市民的日常生活,并慢慢改變了人們的出行方式.為了更好地服務(wù)民眾,某共享單車公司在其官方中設(shè)置了用戶評(píng)價(jià)反饋系統(tǒng),以了解用戶對(duì)車輛狀況和優(yōu)惠活動(dòng)的評(píng)價(jià).現(xiàn)從評(píng)價(jià)系統(tǒng)中選出條較為詳細(xì)的評(píng)價(jià)信息進(jìn)行統(tǒng)計(jì),車輛狀況的優(yōu)惠活動(dòng)評(píng)價(jià)的列聯(lián)表如下:

對(duì)優(yōu)惠活動(dòng)好評(píng)

對(duì)優(yōu)惠活動(dòng)不滿意

合計(jì)

對(duì)車輛狀況好評(píng)

對(duì)車輛狀況不滿意

合計(jì)

(1)能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為優(yōu)惠活動(dòng)好評(píng)與車輛狀況好評(píng)之間有關(guān)系?

(2)為了回饋用戶,公司通過(guò)向用戶隨機(jī)派送騎行券.用戶可以將騎行券用于騎行付費(fèi),也可以通過(guò)轉(zhuǎn)贈(zèng)給好友.某用戶共獲得了張騎行券,其中只有張是一元券.現(xiàn)該用戶從這張騎行券中隨機(jī)選取張轉(zhuǎn)贈(zèng)給好友,求選取的張中至少有張是一元券的概率.

參考數(shù)據(jù):

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱錐中,底面,,的中點(diǎn),是線段上的一點(diǎn),且,連接,.

(1)求證:平面;

(2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系,將曲線上的每一個(gè)點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)縮短為原來(lái)的,得到曲線,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系, 的極坐標(biāo)方程為

(Ⅰ)求曲線的參數(shù)方程;

(Ⅱ)過(guò)原點(diǎn)且關(guān)于軸對(duì)稱的兩條直線分別交曲線、、,且點(diǎn)在第一象限,當(dāng)四邊形的周長(zhǎng)最大時(shí),求直線的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】建設(shè)生態(tài)文明,是關(guān)系人民福祉,關(guān)乎民族未來(lái)的長(zhǎng)遠(yuǎn)大計(jì).某市通宵營(yíng)業(yè)的大型商場(chǎng),為響應(yīng)節(jié)能減排的號(hào)召,在氣溫超過(guò)時(shí),才開(kāi)放中央空調(diào)降溫,否則關(guān)閉中央空調(diào).如圖是該市夏季一天的氣溫(單位:)隨時(shí)間(,單位:小時(shí))的大致變化曲線,若該曲線近似的滿足函數(shù)關(guān)系.

(1)求函數(shù)的表達(dá)式;

(2)請(qǐng)根據(jù)(1)的結(jié)論,判斷該商場(chǎng)的中央空調(diào)應(yīng)在本天內(nèi)何時(shí)開(kāi)啟?何時(shí)關(guān)閉?

查看答案和解析>>

同步練習(xí)冊(cè)答案