A. | 2013 | B. | 2014 | C. | 4026 | D. | 4028 |
分析 根據(jù)抽象函數(shù)的表達(dá)式,令x1=x2=0,可求得f(0)=2014;再利用單調(diào)性的定義證明函數(shù)f(x)在R上為單調(diào)遞增函數(shù),f(x1)+f(-x1)=4028,從而可求M+N.
解答 解:∵對于任意的x1,x2∈[-2015,2015],都有f(x1+x2)=f(x1)+f(x2)-2014,
∴令x1=x2=0,得f(0)=2014,
再令x1+x2=0,將f(0)=2014代入可得f(x)+f(-x)=4028.
設(shè)x1<x2,x1,x2∈[-2015,2015],
則x2-x1>0,f(x2)-f(x1)=f(x2-x1+x1)-f(x1)=f(x2-x1)+f(x1)-2014-f(x1)=f(x2-x1-2014>0,
即函數(shù)f(x)是遞增的,
∴f(x)max=f(2015),f(x)min=f(-2015).
又∵f(2015)+f(-2015)=4028,
∴M+N的值為4028.
故選:D.
點(diǎn)評 本題主要考查函數(shù)值的計(jì)算,利用賦值法,證明函數(shù)的單調(diào)性是解決本題的關(guān)鍵,綜合性較強(qiáng),有一定的難度.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-6,6] | B. | [-3,3]∪[5,+∞) | C. | $[{-6,4+\sqrt{6}}]$ | D. | $[{-6,6}]∪[{4+\sqrt{6},+∞})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0} | B. | {1,2} | C. | {0,3} | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{10}$ | B. | 1+$\frac{1}{1×2}$+$\frac{1}{1×2×3}$+…+$\frac{1}{1×2×…×10}$ | ||
C. | $1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{11}$ | D. | 1+$\frac{1}{1×2}$+$\frac{1}{1×2×3}$+…+$\frac{1}{1×2×…×11}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\sqrt{3}$ | B. | $-\frac{{\sqrt{3}}}{3}$ | C. | $±\sqrt{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0} | B. | {0,1} | C. | {0,1,4} | D. | {0,1,2,3,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 如果兩條直線l1與l2垂直,那么它們的斜率之積一定等于-1 | |
B. | “a>0,b>0”是“$\frac{a}$+$\frac{a}$≥2”的充分必要條件 | |
C. | 命題“若x=y,則sinx=siny”的逆否命題為真命題 | |
D. | “a≠-5或b≠5”是“a+b≠0”的充分不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com