【題目】已知直線y=ax+1和拋物線y2=4x相交于不同的A,B兩點.

)若a=-2,求弦長|AB|

)若以AB為直徑的圓經過原點O,求實數(shù)a的值.

【答案】;(

【解析】

)將直線y=x+1和拋物線y2=4x聯(lián)立,消去y可得x的二次方程,運用韋達定理和弦長公式,計算可得所求值;

)將直線y=ax+1和拋物線y2=4x聯(lián)立,消去y可得x的二次方程,運用判別式大于0和韋達定理,由題意可得OAOB,可得x1x2+y1y2=0,結合A,B均在直線y=ax+1上,可得a的方程,解方程即可得到所求值.

解:()將直線y=x+1和拋物線y2=4x聯(lián)立,可得4x2x+1=0,

Ax1y1),Bx2y2),可得x1+x2=2,x1x2=

即有|AB|=|x1-x2|===;

)將直線y=ax+1和拋物線y2=4x聯(lián)立,可得a2x2+2a-4x+1=0a≠0,

Ax1,y1),Bx2y2),可得=2a-42-4a2=16-16a0,即a1,

x1+x2=,x1x2=,y1y2=ax1+1)(ax2+1=a2x1x2+ax1+x2+1,

AB為直徑的圓經過原點O,可得OAOB,可得x1x2+y1y2=0

即有(1+a2x1x2+ax1+x2+1=1+a2+a+1=0,

解得a=,滿足0

a=

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某工藝公司要對某種工藝品深加工,已知每個工藝品進價為20元,每個的加工費為n元,銷售單價為x.根據(jù)市場調查,須有,,同時日銷售量m(單位:個)與成正比.當每個工藝品的銷售單價為29元時,日銷售量為1000.

1)寫出日銷售利潤y(單位:元)與x的函數(shù)關系式;

2)當每個工藝品的加工費用為5元時,要使該公司的日銷售利潤為100萬元,試確定銷售單價x的值.(提示:函數(shù)的圖象在上有且只有一個公共點)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=ln(ax+b)+x2(a≠0).

(1)若曲線y=f(x)在點(1,f(1))處的切線方程為y=x,a、b的值;

(2)f(x)≤x2+x恒成立,求ab的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是素數(shù),證明存在0,1,2,…,的一個排列(,,…,),使得,,,…,.被除的余數(shù)各不相同.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于定義在區(qū)間D上的函數(shù):若存在閉區(qū)間和常數(shù)e,使得對任意,都有,且對任意,當時,恒成立,則稱函數(shù)為區(qū)間D上的平底型函數(shù).

1)判斷函數(shù)是否為R上的平底型函數(shù)?并說明理由;

2)若函數(shù)是區(qū)間上的平底型函數(shù),求mn的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當時,若,求的取值范圍;

2)若定義在上的奇函數(shù)滿足,且當,,求上的解析式;

3)對于(2)中的,若關于的不等式上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙二人參加某體育項目訓練,近期的五次測試成績得分情況如圖所示.

(1)分別求出兩人得分的平均數(shù)與方差;

(2)根據(jù)圖和上面算得的結果,對兩人的訓練成績作出評價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是平行四邊形,,側面底面,.

(Ⅰ)求證:平面;

(Ⅱ)過的平面交于點,若平面把四面體分成體積相等的兩部分,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù).

(1)當時,解不等式;

(2)若關于的方程有兩個不等的實數(shù)根,求的取值范圍;

(3)設,若對任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.

查看答案和解析>>

同步練習冊答案