【題目】如圖,在四棱錐中,底面是平行四邊形,,側(cè)面底面,,.
(Ⅰ)求證:平面面;
(Ⅱ)過的平面交于點,若平面把四面體分成體積相等的兩部分,求二面角的余弦值.
【答案】(I)詳見解析;(II).
【解析】
(Ⅰ)由題意得到面,從而.又由題意證得四邊形為菱形,故得,于是平面.根據(jù)面面垂直的判定定理可得結(jié)論成立.(Ⅱ)由題意得為中點,建立空間直角坐標系,求出平面和平面的法向量,根據(jù)兩向量夾角的余弦值可得二面角的余弦值.
(Ⅰ)證明:因為,則,
又側(cè)面底面,平面平面,平面,
所以面.
因為平面,則.
又因為,四邊形為平行四邊形,
則,又
則為等邊三角形,則四邊形為菱形,
所以.
又,
所以平面.
又面,
所以平面平面.
(Ⅱ)由平面把四面體分成體積相等的兩部分,則為中點.
由(Ⅰ)知面,且四邊形為菱形、.以A為原點建立如圖所示的空間直角坐標系,
則,.
設(shè)平面的法向量為,
由,得,
令,可得.
同理,平面的法向量.
所以.
由圖形得二面角為鈍角,
所以二面角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知直線y=ax+1和拋物線y2=4x相交于不同的A,B兩點.
(Ⅰ)若a=-2,求弦長|AB|;
(Ⅱ)若以AB為直徑的圓經(jīng)過原點O,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】,,…,是一個數(shù)列,對每個,,.如果,兩數(shù)不同,寫;如果,兩數(shù)相同,寫.于是得到一個新數(shù)列,,…,,其中.重復(fù)上述方法,得到一個由0及1兩個數(shù)字組成的三角形數(shù)表,最后一行僅一個數(shù)字,求這張數(shù)字表中1的和的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解某校九年級400名學生的體質(zhì)情況,隨機抽查了20名學生,測試1 min仰臥起坐的成績(次數(shù)),測試成績?nèi)缦拢?/span>
30 35 32 33 28 36 34 28 25 40
28 32 30 42 37 36 33 31 26 24
(1)20名學生的平均成績是多少?標準差是多少?
(2)次數(shù)位于與之間有多位同學?所占的百分比是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】類似于平面直角坐標系,定義平面斜坐標系:設(shè)數(shù)軸、的交點為,與、軸正方向同向的單位向量分別是、,且與的夾角為,其中,由平面向量基本定理:對于平面內(nèi)的向量,存在唯一有序?qū)崝?shù)對,使得,把叫做點在斜坐標系中的坐標,也叫做向量在斜坐標系中的坐標,記為,在平面斜坐標系內(nèi),直線的方向向量、法向量、點方向式方程、一般式方程等概念與平面直角坐標系內(nèi)相應(yīng)概念以相同方式定義,如時,方程表示斜坐標系內(nèi)一條過點,且方向向量為的直線.
(1)若,,,求;
(2)若,已知點和直線;
①求的一個法向量;
②求點到直線的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市電視臺為了宣傳舉辦問答活動,隨機對該市15~65歲的人群抽樣了人,回答問題統(tǒng)計結(jié)果如圖表所示.
組號 | 分組 | 回答正確 | 回答正確的人數(shù) |
第1組 | 5 | 0.5 | |
第2組 | 0.9 | ||
第3組 | 27 | ||
第4組 | 0.36 | ||
第5組 | 3 |
(Ⅰ) 分別求出的值;
(Ⅱ) 從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,則第2,3,4組每組應(yīng)各抽取多少人?
(Ⅲ) 在(Ⅱ)的前提下,電視臺決定在所抽取的6人中隨機抽取2人頒發(fā)幸運獎,求:所抽取的人中第2組至少有1人獲得幸運獎的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù),若在定義域存在實數(shù),滿足,則稱為“局部奇函數(shù)”.
(1)已知二次函數(shù)(),試判斷是否為“局部奇函數(shù)”?并說明理由;
(2)設(shè)是定義在上的“局部奇函數(shù)”,求實數(shù)的取值范圍;
(3)若 為其定義域上的“局部奇函數(shù)”,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com