【題目】已知圓 ,圓
(1)求兩圓公共弦所在直線的方程;
(2)直線ι過點(4,﹣4)與圓C1相交于A,B兩點,且 ,求直線ι的方程.

【答案】
(1)解:因為圓 ,圓

作差得,兩圓公共弦所在直線的方程為:2x﹣y+4=0.


(2)解:設(shè)過點(4,﹣4)的直線斜率為k,所以所求直線方程為:y+4=k(x﹣4),即kx﹣y﹣4k﹣4=0.

,的圓心(2,1),半徑為: ,

因為圓心距、半徑、半弦長滿足勾股定理,所以弦心距為: =2;

所以 ,k=﹣ ,令一條直線斜率不存在,

直線方程為:x=4或21x+20y+4=0

所求直線方程為:x=4或21x+20y+4=0.


【解析】(1)利用圓系方程直接求出兩圓公共弦所在直線的方程即可.(2)設(shè)出直線方程,利用圓心到直線的距離、半徑、半弦長滿足勾股定理求出直線的斜率,即可得到直線方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=m(x﹣2m)(x+m+3),g(x)=2x﹣2,若對于任一實數(shù)x,f(x)與g(x)至少有一個為負(fù)數(shù),則實數(shù)m的取值范圍是(
A.(﹣4,﹣1)
B.(﹣4,0)
C.(0,
D.(﹣4,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從高一年級學(xué)生中隨機(jī)抽取40中學(xué)生,將他們的期中考試數(shù)學(xué)成績(滿分100分,成績均為不低于40分的整數(shù))分成六段: , 所得到如圖所示的頻率分布直方圖.

(1)求圖中實數(shù)的值;

(2)若該校高一年級共有640人,試估計該校高一年級期中考試數(shù)學(xué)成績不低于60分的人數(shù);

(3)若從數(shù)學(xué)成績在兩個分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取2名學(xué)生,求這2名學(xué)生的數(shù)學(xué)成績之差的絕對值不大于10的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一組數(shù)據(jù)按從小到大順序排列,得到﹣1,0,4,x,7,14中位數(shù)為5,則這組數(shù)據(jù)的平均數(shù)為 , 方差為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐P﹣ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=2,E為PC的中點,M為AB的中點,點F在PA上,且2PF=FA.

(1)求證:BE⊥平面PAC;
(2)求證:CM∥平面BEF;
(3)求平面ABC與平面BEF所成的二面角的平面角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】多面體, , , , , , 在平面上的射影是線段的中點.

(1)求證:平面平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是一個求20個數(shù)的平均數(shù)的程序,在橫線上應(yīng)填 ( )

A.i>20
B.i<20
C.i>=20
D.i<=20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知左、右焦點分別為的橢圓與直線相交于兩點,使得四邊形為面積等于的矩形.

1求橢圓的方程;

2過橢圓上一動點(不在軸上)作圓的兩條切線,切點分別為,直線與橢圓交于兩點, 為坐標(biāo)原點,求的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知cosx=﹣ ,x∈(0,π)
(1)求cos(x﹣ )的值;
(2)求sin(2x+ )的值.

查看答案和解析>>

同步練習(xí)冊答案