【題目】已知左、右焦點分別為的橢圓與直線相交于兩點,使得四邊形為面積等于的矩形.
(1)求橢圓的方程;
(2)過橢圓上一動點(不在軸上)作圓的兩條切線,切點分別為,直線與橢圓交于兩點, 為坐標原點,求的面積的取值范圍.
【答案】(1)(2),
【解析】試題分析:(1)由矩形為面積等于可得,故橢圓方程可化為,又由題意可得,代入橢圓方程可解得,從而可得橢圓的方程;(2)設,根據(jù)相交兩圓的公共弦所在直線方程的求法得到直線的方程為,用代數(shù)方法求出弦長,從而可得的面積,最后根據(jù)函數(shù)的知識求范圍。
試題解析:
(1)∵四邊形為面積等于的矩形,
∴,故,
∴橢圓方程化為,且點,
∵點A在橢圓上,
∴,
整理得,
解得。
∴橢圓的方程為;
(2)設,則以線段為直徑的圓的方程為
,
又圓的方程為,
兩式相減得直線的方程為.
由消去y整理得
∵直線與橢圓交于兩點,
∴,
設,
則
又原點到直線CD的距離為,
∴
設,
∵,
∴
又在上單調(diào)遞增,
∴,
所以的面積的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當時, 求函數(shù)在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】斐波那契數(shù)列滿足: .若將數(shù)列的每一項按照下圖方法放進格子里,每一小格子的邊長為1,記前項所占的格子的面積之和為,每段螺旋線與其所在的正方形所圍成的扇形面積為,則下列結(jié)論錯誤的是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個包裝箱內(nèi)有6件產(chǎn)品,其中4件正品,2件次品。現(xiàn)隨機抽出兩件產(chǎn)品.(要求羅列出所有的基本事件)
(1)求恰好有一件次品的概率。
(2)求都是正品的概率。
(3)求抽到次品的概率。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù), .
(Ⅰ)若曲線與曲線在它們的交點處具有公共切線,求, 的值;
(Ⅱ)當時,若函數(shù)在區(qū)間內(nèi)恰有兩個零點,求的取值范圍;
(Ⅲ)當時,求函數(shù)在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】矩形紙片ABCD中,AB=10cm,BC=8cm.將其按圖(1)的方法分割,并按圖(2)的方法焊接成扇形;按圖(3)的方法將寬BC 等分,把圖(3)中的每個小矩形按圖(1)分割并把4個小扇形焊接成一個大扇形;按圖(4)的方法將寬BC 等分,把圖(4)中的每個小矩形按圖(1)分割并把6個小扇形焊接成一個大扇形;……;依次將寬BC 等分,每個小矩形按圖(1)分割并把個小扇形焊接成一個大扇形.當n時,最后拼成的大扇形的圓心角的大小為 ( )
A. 小于 B. 等于 C. 大于 D. 大于
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,橢圓的右頂點為,左、右焦點分別為、,過點
且斜率為的直線與軸交于點, 與橢圓交于另一個點,且點在軸上的射影恰好為點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過點且斜率大于的直線與橢圓交于兩點(),若,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com