【題目】給定數(shù)列,記該數(shù)列前項(xiàng)中的最大項(xiàng)為,即,該數(shù)列后項(xiàng)中的最小項(xiàng)為,記;

1)對(duì)于數(shù)列:34,7,1,求出相應(yīng)的,,;

2)若是數(shù)列的前項(xiàng)和,且對(duì)任意,有,其中為實(shí)數(shù),,.

(。┰O(shè),證明:數(shù)列是等比數(shù)列;

(ⅱ)若數(shù)列對(duì)應(yīng)的滿足對(duì)任意的正整數(shù)恒成立,求實(shí)數(shù)的取值范圍.

【答案】1,;(2)(。┳C明見解析;(ⅱ).

【解析】

1)由定義可分別求得時(shí)的取值,從而得到;

2)(。┊(dāng)時(shí),根據(jù),結(jié)合已知等式求得,進(jìn)而得到,且;當(dāng)時(shí),利用可得到,結(jié)合通項(xiàng)可整理得到,從而結(jié)論得證;

(ⅱ)由(。┛山Y(jié)合等比數(shù)列通項(xiàng)公式求得;根據(jù)的定義和大小關(guān)系以及,可確定,從而得到,代入通項(xiàng)公式整理化簡可得,解不等式求得結(jié)果即可.

1)由題意得:,

,

2)(。┊(dāng)時(shí),

,

當(dāng)時(shí),

數(shù)列是以為首項(xiàng),為公比的等比數(shù)列

(ⅱ)由(。┑茫

對(duì)任意的恒成立

即:

,解得:

的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,橢圓)的左右兩個(gè)焦點(diǎn)分別是、,在橢圓上運(yùn)動(dòng).

1)若對(duì)有最大值為120°,求出、的關(guān)系式;

2)若點(diǎn)是在橢圓上位于第一象限的點(diǎn),過點(diǎn)作直線的垂線,過作直線的垂線,若直線、的交點(diǎn)在橢圓上,求點(diǎn)的坐標(biāo);

3)若設(shè),在(2)成立的條件下,試求出兩點(diǎn)間距離的函數(shù),并求出的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)F1、F2為雙曲線b0)的左、右焦點(diǎn),過F2作垂直于x軸的直線,在x軸上方交雙曲線C于點(diǎn)M,且∠MF1F2=30°,圓O的方程是x2+y2=b2

1)求雙曲線C的方程;

2)過雙曲線C上任意一點(diǎn)P作該雙曲線兩條漸近線的垂線,垂足分別為P1P2,求的值;

3)過圓O上任意一點(diǎn)Q作圓O的切線l交雙曲線CA、B兩點(diǎn),AB中點(diǎn)為M,求證:|AB|=2|OM|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)任意實(shí)數(shù)x和任意,恒有,則實(shí)數(shù)a的取值范圍為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若正項(xiàng)數(shù)列滿足:,則稱此數(shù)列為“比差等數(shù)列”.

1)試寫出一個(gè)“比差等數(shù)列”的前項(xiàng);

2)設(shè)數(shù)列是一個(gè)“比差等數(shù)列”,問是否存在最小值,如存在,求出最小值;如不存在,請(qǐng)說明理由;

3)已知數(shù)列是一個(gè)“比差等數(shù)列”,為其前項(xiàng)的和,試證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某海域有兩個(gè)島嶼,島在島正東4海里處,經(jīng)多年觀察研究發(fā)現(xiàn),某種魚群洄游的路線是曲線,曾有漁船在距島、島距離和為8海里處發(fā)出過魚群。以所在直線為軸,的垂直平分線為軸建立平面直角坐標(biāo)系.

1)求曲線的標(biāo)準(zhǔn)方程;

2)某日,研究人員在兩島同時(shí)用聲納探測儀發(fā)出不同頻率的探測信號(hào)(傳播速度相同),兩島收到魚群在處反射信號(hào)的時(shí)間比為,問你能否確定處的位置(即點(diǎn)的坐標(biāo))?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)所示,五邊形中,,分別是線段的中點(diǎn),且,現(xiàn)沿翻折,使得,得到的圖形如圖(2)所示.

圖(1) 圖(2)

(1)證明:平面;

(2)若平面與平面所成角的平面角的余弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點(diǎn)為原點(diǎn),其焦點(diǎn)到直線的距離為.設(shè)為直線上的點(diǎn),過點(diǎn)作拋物線的兩條切線,其中為切點(diǎn).

(1) 求拋物線的方程;

(2) 當(dāng)點(diǎn)為直線上的定點(diǎn)時(shí),求直線的方程;

(3) 當(dāng)點(diǎn)在直線上移動(dòng)時(shí),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:已知函數(shù)上的最小值為,若恒成立,則稱函數(shù)上具有性質(zhì).

)判斷函數(shù)上是否具有性質(zhì)?說明理由.

)若上具有性質(zhì),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案