【題目】在如圖所示的幾何體中,四邊形是等腰梯形, , , 平面, , .
()求證: 平面.
()求二面角的余弦值.
()在線段(含端點)上,是否存在一點,使得平面,若存在,求出的值;若不存在,請說明理由.
【答案】()見解析;();()存在,
【解析】試題分析:(1)由題意,證明, ,證明面;(2)建立空間直角坐標系,求平面和平面的法向量,解得余弦值為;(3)得, ,所以, ,所以存在為中點.
試題解析:
()∵, ,∴.
∵,∴,∴, .
∵,且,
、面,∴面.
()知,∴.
∵面, , , 兩兩垂直,以為坐標原點,
以, , 為, , 軸建系.
設,則, , , , ,
∴, .
設的一個法向量為,
∴,取,則.
由于是面的法向量,
則.
∵二面角為銳二面角,∴余弦值為.
()存在點.
設, ,
∴, , ,
∴, .
∵面, .
若面,∴,
∴,
∴,∴,∴存在為中點.
【題型】解答題
【結束】
19
【題目】已知函數(shù).
()當時,求此函數(shù)對應的曲線在處的切線方程.
()求函數(shù)的單調區(qū)間.
()對,不等式恒成立,求的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為,點在拋物線上,過焦點的直線交拋物線于兩點.
(1)求拋物線的方程以及的值;
(2)記拋物線的準線與軸交于點,若,,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱中, 平面, .過的平面交于點,交于點.
(l)求證: 平面;
(Ⅱ)求證: ;
(Ⅲ)記四棱錐的體積為,三棱柱的體積為.若,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 = (1,2sinθ),= (sin(θ+),1),θR。
(1) 若⊥,求 tanθ的值;
(2) 若∥,且 θ (0,),求 θ的值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是BC、CD的中點,G是EF的中點,現(xiàn)在沿AE、AF及EF把這個正方形折成一個空間圖形,使B、C、D三點重合,重合后的點記為H,那么,在這個空間圖形中必有( 。
A. 所在平面B. 所在平面
C. 所在平面D. 所在平面
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖, 是邊長為3的正方形, 平面, 平面, .
(1)證明:平面平面;
(2)在上是否存在一點,使平面將幾何體分成上下兩部分的體積比為?若存在,求出點的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列關于古典概型的說法中正確的是( )
①試驗中所有可能出現(xiàn)的基本事件只有有限個;
②每個事件出現(xiàn)的可能性相等;
③每個基本事件出現(xiàn)的可能性相等;
④基本事件的總數(shù)為n,隨機事件A若包含k個基本事件,則.
A. ②④ B. ③④ C. ①④ D. ①③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com