【題目】已知數(shù)列{bn}是等差數(shù)列,b11,b1b2b10145.

(1)求數(shù)列{bn}的通項(xiàng)公式bn;

(2)設(shè)數(shù)列{an}的通項(xiàng)anloga(其中a0a≠1).記Sn是數(shù)列{an}的前n項(xiàng)和,試比較Snlogabn1的大小,并證明你的結(jié)論.

【答案】1bn3n2.2)當(dāng)a1時(shí),Snlogabn1,當(dāng)0a1時(shí),Snlogabn1

【解析】

(1)設(shè)數(shù)列{bn}的公差為d

由題意得∴bn3n2.

(2)bn3n2,知Snloga(11)logaloga

loga

logabn1loga,于是,比較Snlogabn1的大小比較

(11)的大小.

n1,有11>,

n2,有(11)>>.

推測(cè)(11),(*)

當(dāng)n1時(shí),已驗(yàn)證(*)式成立;

假設(shè)nk(k≥1)時(shí)(*)式成立,即(11),

則當(dāng)nk1時(shí),

(11)>.

>0,

從而(11),即當(dāng)nk1時(shí),(*)式成立.由①②(*)式對(duì)任意正整數(shù)n都成立.于是,當(dāng)a1時(shí),Snlogabn1,當(dāng)0a1時(shí),Snlogabn1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,其中為參數(shù),.在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為.

(1)求直線的直角坐標(biāo)方程與曲線的普通方程;

(2)若是曲線上的動(dòng)點(diǎn),為線段的中點(diǎn).求點(diǎn)到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)若,求曲線處的切線方程;

(2)若對(duì)任意的,,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的方程為.曲線的參數(shù)方程為為參數(shù)).

(1)求的直角坐標(biāo)方程;

(2)若有三個(gè)不同的公共點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人投籃命中的概率分別為,各自相互獨(dú)立.現(xiàn)兩人做投籃游戲,共比賽3局,每局每人各投一球.

(1)求比賽結(jié)束后甲的進(jìn)球數(shù)比乙的進(jìn)球數(shù)多1的概率;

(2)設(shè)表示比賽結(jié)束后甲、乙兩人進(jìn)球數(shù)的差的絕對(duì)值,求的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在含有個(gè)元素的集合中,若這個(gè)元素的一個(gè)排列(,…,)滿足,則稱這個(gè)排列為集合的一個(gè)錯(cuò)位排列(例如:對(duì)于集合,排列的一個(gè)錯(cuò)位排列;排列不是的一個(gè)錯(cuò)位排列).記集合的所有錯(cuò)位排列的個(gè)數(shù)為.

(1)直接寫出,,的值;

(2)當(dāng)時(shí),試用,表示,并說(shuō)明理由;

(3)試用數(shù)學(xué)歸納法證明:為奇數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某人有4種顏色的燈泡(每種顏色的燈泡足夠多),要在如圖所示的6個(gè)點(diǎn)A、B、C、A1、、B1、C1上各裝一個(gè)燈泡,要求同一條線段兩端的燈泡不同色,則每種顏色的燈泡都至少用一個(gè)的安裝方法共有 種(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為θ為參數(shù)),直線l的參數(shù)方程為.

(1)若a=1,求Cl的交點(diǎn)坐標(biāo);

(2)若C上的點(diǎn)到l的距離的最大值為,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有一款智能學(xué)習(xí)APP,學(xué)習(xí)內(nèi)容包含文章學(xué)習(xí)和視頻學(xué)習(xí)兩類,且這兩類學(xué)習(xí)互不影響.已知該APP積分規(guī)則如下:每閱讀一篇文章積1分,每日上限積5分;觀看視頻累計(jì)3分鐘積2分,每日上限積6分.經(jīng)過(guò)抽樣統(tǒng)計(jì)發(fā)現(xiàn),文章學(xué)習(xí)積分的概率分布表如表1所示,視頻學(xué)習(xí)積分的概率分布表如表2所示.

(1)現(xiàn)隨機(jī)抽取1人了解學(xué)習(xí)情況,求其每日學(xué)習(xí)積分不低于9分的概率;

(2)現(xiàn)隨機(jī)抽取3人了解學(xué)習(xí)情況,設(shè)積分不低于9分的人數(shù)為,求的概率分布及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案