【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為:為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線與曲線交于兩點.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)若點的極坐標(biāo)為,求的面積.

【答案】(1)直線的普通方程為,曲線的直角坐標(biāo)方程為;(2)

【解析】分析:(1)直線的參數(shù)方程為:為參數(shù)),消去t即可;曲線的極坐標(biāo)方程為,利用直角坐標(biāo)與極坐標(biāo)之間的互化公式即可;

(2)轉(zhuǎn)換成直角坐標(biāo)去進(jìn)行求解.

詳解:(1)因為直線的參數(shù)方程為,

故直線的普通方程為

又曲線的極坐標(biāo)方程為,即,

因為,,∴,即

故曲線的直角坐標(biāo)方程為.

(2)因為點的極坐標(biāo)為,∴點的直角坐標(biāo)為,∴點到直線的距離.

,代入中得,

,

的面積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的圖象過點。

(1)求的值并求函數(shù)的值域;

(2)若關(guān)于的方程有實根,求實數(shù)的取值范圍;

(3)若函數(shù), ,則是否存在實數(shù),使得函數(shù)的最大值為0?若存在,求出的值;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,焦點在x軸上的橢圓C: =1經(jīng)過點(b,2e),其中e為橢圓C的離心率.過點T(1,0)作斜率為k(k>0)的直線l交橢圓C于A,B兩點(A在x軸下方).

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過點O且平行于l的直線交橢圓C于點M,N,求 的值;
(3)記直線l與y軸的交點為P.若 = ,求直線l的斜率k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a,b∈R.若直線l:ax+y﹣7=0在矩陣A= 對應(yīng)的變換作用下,得到的直線為l′:9x+y﹣91=0.求實數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某拋擲骰子游戲中,規(guī)定游戲者可以有三次機(jī)會拋擲一顆骰子若游戲者在前兩次拋擲中至少成功一次才可以進(jìn)行第三次拋擲,其中拋擲骰子不成功得0分,第1次成功得3分,第2次成功得3分,第3次成功得4.游戲規(guī)則如下:拋擲1枚骰子,第1次拋擲骰子向上的點數(shù)為奇數(shù)則記為成功,第2次拋擲骰子向上的點數(shù)為3的倍數(shù)則記為成功,第3次拋擲骰子向上的點數(shù)為6則記為成功.用隨機(jī)變量表示該游戲者所得分?jǐn)?shù).

(1)求該游戲者有機(jī)會拋擲第3次骰子的概率;

(2)求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高三年級有500名學(xué)生,為了了解數(shù)學(xué)科的學(xué)習(xí)情況,現(xiàn)從中隨機(jī)抽出若干名學(xué)生在一次測試中的數(shù)學(xué)成績,制成如下頻率分布表:

分組

頻數(shù)

頻率

12

4

合計

根據(jù)上面圖表,求處的數(shù)值

在所給的坐標(biāo)系中畫出的頻率分布直方圖;

根據(jù)題中信息估計總體平均數(shù),并估計總體落在中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)的最大值是最小值的倍,求實數(shù)的值;

(2)若函數(shù)存在零點,求函數(shù)的零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假設(shè)某士兵遠(yuǎn)程射擊一個易爆目標(biāo),射擊一次擊中目標(biāo)的概率為,三次射中目標(biāo)或連續(xù)兩次射中目標(biāo)該目標(biāo)爆炸,停止射擊否則就一直獨立地射擊至子彈用完現(xiàn)有5發(fā)子彈,設(shè)耗用子彈數(shù)為隨機(jī)變量X.

(1)若該士兵射擊兩次,求至少射中一次目標(biāo)的概率;

(2)求隨機(jī)變量X的概率分布與數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(0<φ<π)

(1)當(dāng)φ時,在給定的坐標(biāo)系內(nèi),用“五點法”做出函數(shù)f(x)在一個周期內(nèi)的圖象;

(2)若函數(shù)f(x)為偶函數(shù),求φ的值;

(3)在(2)的條件下,求函數(shù)在[﹣π,π]上的單調(diào)遞減區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案