【題目】假設(shè)某士兵遠程射擊一個易爆目標,射擊一次擊中目標的概率為,三次射中目標或連續(xù)兩次射中目標,該目標爆炸,停止射擊,否則就一直獨立地射擊至子彈用完.現(xiàn)有5發(fā)子彈,設(shè)耗用子彈數(shù)為隨機變量X.
(1)若該士兵射擊兩次,求至少射中一次目標的概率;
(2)求隨機變量X的概率分布與數(shù)學期望E(X).
【答案】(1) .
(2)分布列見解析,.
【解析】分析:(1)利用對立事件即可求出答案;
(2)耗用子彈數(shù)的所有可能取值為2,3,4,5,分別求出相應的概率即可.
詳解:(1)該士兵射擊兩次,至少射中一次目標的概率為
.
(2)耗用子彈數(shù)的所有可能取值為2,3,4,5.
當時,表示射擊兩次,且連續(xù)擊中目標,;
當時,表示射擊三次,第一次未擊中目標,且第二次和第三次連續(xù)擊中目標,
;
當時,表示射擊四次,第二次未擊中目標,且第三次和第四次連續(xù)擊中目標,
;
當時,表示射擊五次,均未擊中目標,或只擊中一次目標,或擊中兩次目標前四次擊中不連續(xù)兩次或前四次擊中一次且第五次擊中,或擊中三次第五次擊中且前四次無連續(xù)擊中。
;
隨機變量的數(shù)學期望
.
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐中,底面是菱形,側(cè)面平面,且,,.
(Ⅰ)證明:平面;
(Ⅱ)若點在線段上,且,試問:在上是否存在一點,使面?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線的參數(shù)方程為:(為參數(shù)),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,直線與曲線交于,兩點.
(1)求直線的普通方程和曲線的直角坐標方程;
(2)若點的極坐標為,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】 某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計能獲得25萬元~ 1600萬元的投資收益,現(xiàn)準備制定一個對科研課題組的獎勵方案:獎金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,獎金不超過75萬元,同時獎金不超過投資收益的20%.(即:設(shè)獎勵方案函數(shù)模型為y=f (x)時,則公司對函數(shù)模型的基本要求是:當x∈[25,1600]時,①f(x)是增函數(shù);②f (x) 75恒成立; 恒成立.
(1)判斷函數(shù)是否符合公司獎勵方案函數(shù)模型的要求,并說明理由;
(2)已知函數(shù)符合公司獎勵方案函數(shù)模型要求,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2016年時紅軍長征勝利80周年,某市電視臺舉辦紀念紅軍長征勝利80周年知識問答,宣傳長征精神.首先在甲、乙、丙、丁四個不同的公園進行支持簽名活動,其次在各公園簽名的人中按分層抽樣的方式抽取10名幸運之星,每人獲得一個紀念品,其數(shù)據(jù)表格如下:
(Ⅰ)求此活動中各公園幸運之星的人數(shù);
(Ⅱ)從乙和丙公園的幸運之星中任選兩人接受電視臺記者的采訪,求這兩人均來自乙公園的概率;
(Ⅲ)電視臺記者對乙公園的簽名人進行了是否有興趣研究“紅軍長征”歷史的問卷調(diào)查,統(tǒng)計結(jié)果如下(單位:人):
據(jù)此判斷能否在犯錯誤的概率不超過0.01的前提下認為有興趣研究“紅軍長征”歷史與性別有關(guān).
附臨界值表及公式: ,其中
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系xOy中,以O(shè)為極點,x軸的正半軸為極軸,建立極坐標系.曲線C1的極坐標方程為ρ=4cosθ,直線l: ( 為參數(shù)).
(1)求曲線C1的直角坐標方程及直線l的普通方程;
(2)若曲線C2的參數(shù)方程為 (α為參數(shù)),曲線P(x0 , y0)上點P的極坐標為 ,Q為曲線C2上的動點,求PQ的中點M到直線l距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了鞏固全國文明城市創(chuàng)建成果,今年吉安市開展了拆除違章搭建鐵皮棚專項整治行為.為了了解市民對此項工作的“支持”與“反對”態(tài)度,隨機從存在違章搭建的戶主中抽取了男性、女性共名進行調(diào)查,調(diào)查結(jié)果如下:
支持 | 反對 | 合計 | |
男性 | |||
女性 | |||
合計 |
(1)根據(jù)以上數(shù)據(jù),判斷是否有的把握認為對此項工作的“支持”與“反對”態(tài)度與“性別”有關(guān);
(2)現(xiàn)從參與調(diào)查的女戶主中按分層抽樣的方法抽取人進行調(diào)查,分別求出所抽取的人中持“支持”和“反對”態(tài)度的人數(shù);
(3)現(xiàn)從(2)中所抽取的人中,再隨機抽取人贈送小品,求恰好抽到人持“支持”態(tài)度的概率?
參考公式:,其中.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地空氣中出現(xiàn)污染,須噴灑一定量的去污劑進行處理.據(jù)測算,每噴灑1個單位的去污劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時間x(單位:天)變化的函數(shù)關(guān)系式近似為,若多次噴灑,則某一時刻空氣中的去污劑濃度為每次投放的去污劑在相應時刻所釋放的濃度之和.由實驗知,當空氣中去污劑的濃度不低于4(毫克/立方米)時,它才能起到去污作用.
(Ⅰ)若一次噴灑4個單位的去污劑,則去污時間可達幾天?
(Ⅱ)若第一次噴灑2個單位的去污劑,6天后再噴灑 個單位的去污劑,要使接下來的4天中能夠持續(xù)有效去污,試求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是定義域為(0,+∞)的單調(diào)函數(shù),若對任意的x∈(0,+∞),都有 ,且方程|f(x)﹣3|=x3﹣6x2+9x﹣4+a在區(qū)間(0,3]上有兩解,則實數(shù)a的取值范圍是( )
A.0<a≤5
B.a<5
C.0<a<5
D.a≥5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com