(2012•武昌區(qū)模擬)如圖,已知直角三角形△ABC的三邊CB,BA,AC的長(zhǎng)度成等差數(shù)列,點(diǎn)E為直角邊AB的中點(diǎn),點(diǎn)D在斜邊AC上,且
AD
AC
,若CE⊥BD,則λ=( 。
分析:設(shè)三邊為 a-d、a、a+d,則(a+d)2=a2+(a-d)2,解得 a=4d,不妨令 d=1,因此三邊長(zhǎng)分別為 CB=3,BA=4,AC=5.再由
CE
BD
=0,運(yùn)算求得λ的值.
解答:解:由于三邊CB,BA,AC的長(zhǎng)度成等差數(shù)列,設(shè)為 a-d、a、a+d,且a>0,d>0,a-d>0,則(a+d)2=a2+(a-d)2,
解得 a=4d,不妨令 d=1,因此三邊長(zhǎng)分別為 CB=3,BA=4,AC=5.
∵CE=
1
2
AB
-BC,∴
BD
=
BA
AD
=
BA
AC
=(1-λ)
BA
BC

由 CE⊥BD 得:
CE
BD
=0,即
1
2
 (1-λ) AB2-λ BC2=0,8(1-λ)-9λ=0,
所以λ=
8
17
,
故選B.
點(diǎn)評(píng):本題主要考查向量的運(yùn)算法則,兩個(gè)向量的數(shù)量積的運(yùn)算,和解決問題的能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•武昌區(qū)模擬)已知數(shù)列{an},{bn}滿足:a1=3,當(dāng)n≥2時(shí),an-1+an=4n;對(duì)于任意的正整數(shù)n,b1+2b2+…+2n-1bn=nan.設(shè){bn}的前n項(xiàng)和為Sn
(Ⅰ)計(jì)算a2,a3,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求滿足13<Sn<14的n的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•武昌區(qū)模擬)在圓x2+y2=4上,與直線l:4x+3y-12=0的距離最小值是
2
5
2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•武昌區(qū)模擬)如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD,AB=
2
AD,E是線段PD上的點(diǎn),F(xiàn)是線段AB上的點(diǎn),且
PE
ED
=
BF
FA
=λ(λ>0)

(Ⅰ)當(dāng)λ=1時(shí),證明DF⊥平面PAC;
(Ⅱ)是否存在實(shí)數(shù)λ,使異面直線EF與CD所成的角為60°?若存在,試求出λ的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•武昌區(qū)模擬)設(shè)fk(x)=si
n
2k
 
x+co
s
2k
 
x(x∈R)
,利用三角變換,估計(jì)fk(x)在k=l,2,3時(shí)的取值情況,對(duì)k∈N*時(shí)推測(cè)fk(x)的取值范圍是
1
2k-1
fk(x) ≤1
1
2k-1
fk(x) ≤1
(結(jié)果用k表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•武昌區(qū)模擬)2011年武漢電視臺(tái)問政直播節(jié)日首場(chǎng)內(nèi)容是“讓交通更順暢”.A、B、C、D四個(gè)管理部門的負(fù)責(zé)人接受問政,分別負(fù)責(zé)問政A、B、C、D四個(gè)管理部門的現(xiàn)場(chǎng)市民代表(每一名代表只參加一個(gè)部門的問政)人數(shù)的條形圖如下.為了了解市民對(duì)武漢市實(shí)施“讓交通更順暢”幾個(gè)月來的評(píng)價(jià),對(duì)每位現(xiàn)場(chǎng)市民都進(jìn)行了問卷調(diào)查,然后用分層抽樣的方法從調(diào)查問卷中抽取20份進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如下面表格所示:
滿意 一般 不滿意
A部門 50% 25% 25%
B部門 80% 0 20%
C部門 50% 50% 0
D部門 40% 20% 40%
(I)若市民甲選擇的是A部門,求甲的調(diào)查問卷被選中的概率;
(11)若想從調(diào)查問卷被選中且填寫不滿意的市民中再選出2人進(jìn)行電視訪談,求這兩人中至少有一人選擇的是D部門的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案