【題目】如圖,已知一艘海監(jiān)船O上配有雷達,其監(jiān)測范圍是半徑為25 km的圓形區(qū)域,一艘外籍輪船從位于海監(jiān)船正東40 kmA處出發(fā),徑直駛向位于海監(jiān)船正北30 kmB處島嶼,速度為28 km/h.

這艘外籍輪船能否被海監(jiān)船監(jiān)測到?若能持續(xù)時間多長?(要求用坐標(biāo)法)

【答案】0.5 h

【解析】試題分析:建立直角坐標(biāo)系,問題轉(zhuǎn)化為圓與直線是否相交,只需用點到直線的距離公式即可判斷,監(jiān)測時間為直線與圓相交的弦長除以輪船的速度.

試題解析:

如圖,以O為原點,東西方向為x軸建立直角坐標(biāo)系,則A(40,0),B(0,30),圓O方程x2y2252.

直線AB方程:1,即3x4y1200.

設(shè)OAB距離為d,則d24<25,

所以外籍輪船能被海監(jiān)船監(jiān)測到.

設(shè)監(jiān)測時間為t,則t (h)

答:外籍輪船能被海監(jiān)船監(jiān)測到,時間是0.5 h.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有2名男生和3名女生. (Ⅰ)若其中2名男生必須相鄰排在一起,則這5人站成一排,共有多少種不同的排法?
(Ⅱ)若男生甲既不能站排頭,也不能站排尾,這5人站成一排,共有多少種不同的排法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知點A的極坐標(biāo)為( , ),直線l的極坐標(biāo)方程為ρcos(θ﹣ )=a,且點A在直線l上,
(1)求a的值及直線l的直角坐標(biāo)方程;
(2)圓C的參數(shù)方程為 (α為參數(shù)),試判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】畫正六棱柱的直觀圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】比較下列各組數(shù)中兩個數(shù)的大。

(1) ;

(2)3與3.1

(3) ;

(4)0.20.6與0.30.4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐PABC中,不能證明APBC的條件是(  )

A. APPB,APPC

B. APPB,BCPB

C. 平面BPC⊥平面APC,BCPC

D. AP⊥平面PBC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】汽車租賃公司為了調(diào)查A,B兩種車型的出租情況,現(xiàn)隨機抽取了這兩種車型各100輛汽車,分別統(tǒng)計了每輛車某個星期內(nèi)的出租天數(shù),統(tǒng)計數(shù)據(jù)如下表: A型車

出租天數(shù)

1

2

3

4

5

6

7

車輛數(shù)

5

10

30

35

15

3

2

B型車

出租天數(shù)

1

2

3

4

5

6

7

車輛數(shù)

14

20

20

16

15

10

5

( I)從出租天數(shù)為3天的汽車(僅限A,B兩種車型)中隨機抽取一輛,估計這輛汽車恰好是A型車的概率;
(Ⅱ)根據(jù)這個星期的統(tǒng)計數(shù)據(jù),估計該公司一輛A型車,一輛B型車一周內(nèi)合計出租天數(shù)恰好為4天的概率;
(Ⅲ)如果兩種車型每輛車每天出租獲得的利潤相同,該公司需要從A,B兩種車型中購買一輛,請你根據(jù)所學(xué)的統(tǒng)計知識,給出建議應(yīng)該購買哪一種車型,并說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的中心在原點,一個焦點F(﹣2,0),且長軸長與短軸長的比是
(1)求橢圓C的方程;
(2)設(shè)點M(m,0)在橢圓C的長軸上,點P是橢圓上任意一點.當(dāng) 最小時,點P恰好落在橢圓的右頂點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x(lnx﹣ax)(a∈R)在區(qū)間(0,2)上有兩個極值點,則a的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案