【題目】已知曲線上的點(diǎn)到點(diǎn)的距離比到直線的距離小.
(1)求曲線的方程;
(2)設(shè)為曲線上任意一點(diǎn),點(diǎn),問(wèn)是否存在垂直于軸的直線,使得被以為直徑的圓是的弦長(zhǎng)恒為定值?若存在,求出的方程和定值;若不存在,說(shuō)明理由.
【答案】(1);(2)存在,直線的方程為,定值為
【解析】
(1)根據(jù)題意可知,曲線上的點(diǎn)到點(diǎn)的距離與到直線的距離相等,結(jié)合拋物線的定義,即可得到答案;
(2) 設(shè)直線方程為,,直線與以為直徑的圓的交點(diǎn)為,,因?yàn)橹本垂直于軸,故弦長(zhǎng)為,因此根據(jù)圓的直徑式方程寫(xiě)出以為直徑的圓的方程將代入,利用根與系數(shù)關(guān)系求出,代入弦長(zhǎng),可求得,令即可得到答案.
(1)依題意得,曲線上的點(diǎn)到點(diǎn)的距離與到直線的距離相等.
所以曲線的方程為:.
(2)假設(shè)滿足條件的直線存在,其方程為,,
則以為直徑的圓的方程為,
將直線方程代入,得,
則.
設(shè)直線與以為直徑的圓的交點(diǎn)為,,
則,,
于是有.
當(dāng),即時(shí),為定值.
故滿足條件的直線存在,其方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為 (其中為參數(shù),).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,被截得的弦長(zhǎng)為.
(1)求實(shí)數(shù)的值;
(2)設(shè)與交于點(diǎn),,若點(diǎn)的坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出如下四個(gè)命題:
①若“或”為假命題,則均為假命題;
②命題“若且,則”的否命題為“若且,則”;
③若是實(shí)數(shù),則“”是“”的必要不充分條件;
④命題“若則”的逆否命題為真命題.
其中正確命題的個(gè)數(shù)是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面平面ABCD,,,底面ABCD是邊長(zhǎng)為2的菱形,點(diǎn)E,F分別為棱DC,BC的中點(diǎn),點(diǎn)G是棱SC靠近點(diǎn)C的四等分點(diǎn).
求證:(1)直線平面EFG;
(2)直線平面SDB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,四邊形是菱形,,,,平面,,,是的中點(diǎn).
(1)求證:平面平面;
(2)求直線與平面所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
設(shè)函數(shù)
(Ⅰ)若是函數(shù)的極值點(diǎn),1和是的兩個(gè)不同零點(diǎn),且
且,求的值;
(Ⅱ)若對(duì)任意, 都存在( 為自然對(duì)數(shù)的底數(shù)),使得
成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)舉行優(yōu)惠促銷(xiāo)活動(dòng),顧客僅可以從以下兩種優(yōu)惠方案中選擇一種.
方案一:每滿100元減20元;
方案二:滿100元可抽獎(jiǎng)一次.具體規(guī)則是從裝有2個(gè)紅球、2個(gè)白球的箱子隨機(jī)取出3個(gè)球(逐個(gè)有放回地抽取),所得結(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)
紅球個(gè)數(shù) | 3 | 2 | 1 | 0 |
實(shí)際付款 | 7折 | 8折 | 9折 | 原價(jià) |
(1)該商場(chǎng)某顧客購(gòu)物金額超過(guò)100元,若該顧客選擇方案二,求該顧客獲得7折或8折優(yōu)惠的概率;
(2)若某顧客購(gòu)物金額為180元,選擇哪種方案更劃算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近幾年,我國(guó)鮮切花產(chǎn)業(yè)得到了快速發(fā)展,相關(guān)部門(mén)制定了鮮切花產(chǎn)品行業(yè)等級(jí)標(biāo)準(zhǔn),統(tǒng)一使用綜合指標(biāo)值進(jìn)行衡量,如下表所示.某花卉生產(chǎn)基地準(zhǔn)備購(gòu)進(jìn)一套新型的生產(chǎn)線,現(xiàn)進(jìn)行設(shè)備試用,分別從新舊兩條生產(chǎn)線加工的產(chǎn)品中選取30個(gè)樣品進(jìn)行等級(jí)評(píng)定,整理成如圖所示的莖葉圖.
綜合指標(biāo) | |||
質(zhì)量等級(jí) | 三級(jí) | 二級(jí) | 一級(jí) |
(Ⅰ)根據(jù)莖葉圖比較兩條生產(chǎn)線加工的產(chǎn)品的綜合指標(biāo)值的平均值及分散程度(直接給出結(jié)論即可);
(Ⅱ)若從等級(jí)為三級(jí)的樣品中隨機(jī)選取3個(gè)進(jìn)行生產(chǎn)流程調(diào)查,其中來(lái)自新型生產(chǎn)線的樣品個(gè)數(shù)為,求的分布列;
(Ⅲ)根據(jù)該花卉生產(chǎn)基地的生產(chǎn)記錄,原有生產(chǎn)線加工的產(chǎn)品的單件平均利潤(rùn)為4元,產(chǎn)品的銷(xiāo)售率(某等級(jí)產(chǎn)品的銷(xiāo)量與產(chǎn)量的比值)及產(chǎn)品售價(jià)如下表:
三級(jí)花 | 二級(jí)花 | 一級(jí)花 | |
銷(xiāo)售率 | |||
單件售價(jià) | 12元 | 16元 | 20元 |
預(yù)計(jì)該新型生產(chǎn)線加工的鮮切花單件產(chǎn)品的成本為span>10元,日產(chǎn)量3000件.因?yàn)轷r切花產(chǎn)品的保鮮特點(diǎn),未售出的產(chǎn)品統(tǒng)一按原售價(jià)的50%全部處理完.如果僅從單件產(chǎn)品利潤(rùn)的角度考慮,該生產(chǎn)基地是否需要引進(jìn)該新型生產(chǎn)線?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,焦距為2,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)作圓的切線,切點(diǎn)分別為,直線與軸交于點(diǎn),過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,求的面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com