【題目】已知圓錐曲線 (是參數(shù))和定點,、是圓錐曲線的左、右焦點.
(1)求經(jīng)過點且垂直于直線的直線的參數(shù)方程;
(2)以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,求直線的極坐標方程.
科目:高中數(shù)學 來源: 題型:
【題目】三角形的面積為,其中,,為三角形的邊長,為三角形內(nèi)切圓的半徑,則利用類比推理,可得出四面體的體積為( )
A.
B.
C. ,(為四面體的高)
D. ,(,,,分別為四面體的四個面的面積,為四面體內(nèi)切球的半徑)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校為了解高三復習效果,從高三第一學期期中考試成績中隨機抽取50名考生的數(shù)學成績,分成6組制成頻率分布直方圖如圖所示:
(1)求的值;并且計算這50名同學數(shù)學成績的樣本平均數(shù);
(2)該學校為制定下階段的復習計劃,從成績在的同學中選出3位作為代表進行座談,記成績在的同學人數(shù)位,寫出的分布列,并求出期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求在點處的切線方程;
(2)當時,求函數(shù)的單調(diào)遞增區(qū)間;
(3)當時,證明: (其中為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有六支足球隊參加單循環(huán)比賽(即任意兩支球隊只踢一場比賽),第一周的比賽中,各踢了場, 各踢了場, 踢了場,且隊與隊未踢過, 隊與隊也未踢過,則在第一周的比賽中, 隊踢的比賽的場數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為實常數(shù)).
(Ⅰ)若為的極值點,求實數(shù)的取值范圍.
(Ⅱ)討論函數(shù)在上的單調(diào)性.
(Ⅲ)若存在,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線的漸近線方程是,右焦點,則雙曲線的方程為_________,又若點, 是雙曲線的左支上一點,則周長的最小值為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位擬建一個扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點為圓心的兩個同心圓弧和延長后通過點的兩條直線段圍成.按設(shè)計要求扇環(huán)面的周長為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為米,圓心角為(弧度).
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)已知在花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4元/米,弧線部分的裝飾費用為9元/米.設(shè)花壇的面積與裝飾總費用的比為,求關(guān)于的函數(shù)關(guān)系式,并求出為何值時, 取得最大值?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com