中,
(1)求角B的大小;
(2)求的取值范圍.

(1) ;(2) .

解析試題分析:(1)由正弦定理實(shí)現(xiàn)邊角互化,再利用兩角和與差的正余弦公式化簡(jiǎn)為,再求角的值;(2)二倍角公式降冪擴(kuò)角,兩角差余弦公式展開(kāi),同時(shí)注意隱含條件,即可化為一角一函數(shù),再結(jié)合求其值域.求解時(shí)一定借助函數(shù)圖象找其最低點(diǎn)與最高點(diǎn)的縱坐標(biāo).
試題解析:(1)由已知得:,

 
                                 5分
(2)由(1)得:,故+




 ∴
所以的取值范圍是.            12分
考點(diǎn):1.正余弦定理;2.三角函數(shù)值域;3.二倍角公式與兩角和與差的正余弦公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),的部分圖象如圖所示.

(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),且當(dāng)時(shí),的最小值為2.
(1)求的值,并求的單調(diào)增區(qū)間;
(2)將函數(shù)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)縮短到原來(lái)的倍,再把所得圖象向右平移個(gè)單位,得到函數(shù),求方程在區(qū)間上的所有根之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)求的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)求函數(shù)上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)求的最小正周期; (2)求的對(duì)稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),且函數(shù)的最小正周期為.
(1)求的值和函數(shù)的單調(diào)增區(qū)間;
(2)在中,角A、B、C所對(duì)的邊分別是、、,又,,的面積等于,求邊長(zhǎng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知a,b,c分別為ΔABC三個(gè)內(nèi)角A,B,C的對(duì)邊長(zhǎng),.
(Ⅰ)求角A的大。
(II)若a=,ΔABC的面積為1,求b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

中,角所對(duì)的邊分別為,已知,
(Ⅰ)求的大小;
(Ⅱ)若,求的周長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

的三邊為,滿足
(1)求的值;
(2)求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案