凸函數(shù)的性質(zhì)定理:如果函數(shù)f(x)在區(qū)間D上是凸函數(shù),則對(duì)于區(qū)間D內(nèi)的任意x1,x2,…,xn,有≤f,已知函數(shù)y=sin x在區(qū)間

(0,π)上是凸函數(shù),則在△ABC中,sin A+sin B+sin C的最大值為    . 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:


已知拋物線C:y2=2px(p>0)過(guò)點(diǎn)A(1,-2).

(1)求拋物線C的方程,并求其準(zhǔn)線方程.

(2)是否存在平行于OA(O為坐標(biāo)原點(diǎn))的直線l,使得直線l與拋物線C有公共點(diǎn),且直線OA與l的距離等于?若存在,求出直線l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


如圖,在圓O中,直徑AB與弦CD垂直,垂足為E,EF⊥DB,垂足為F,若AB=6,AE=1,則DF·DB=   . 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


如圖,已知△ABC中的兩條角平分線AD和CE相交于H,∠B=60°,F在AC上,且AE=AF.

(1)證明:B,D,H,E四點(diǎn)共圓;

(2)證明:CE平分∠DEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


如果△A1B1C1的三個(gè)內(nèi)角的余弦值分別等于△A2B2C2的三個(gè)內(nèi)角的正弦值,那么(  )

(A)△A1B1C1和△A2B2C2都是銳角三角形

(B)△A1B1C1和△A2B2C2都是鈍角三角形

(C)△A1B1C1是鈍角三角形,△A2B2C2是銳角三角形

(D)△A1B1C1是銳角三角形,△A2B2C2是鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


設(shè)當(dāng)x=θ時(shí),函數(shù)f(x)=sin x-2cos x取得最大值,則cos θ=    . 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


設(shè)函數(shù)f(θ)=sin θ+cos θ,其中,角θ的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與x軸非負(fù)半軸重合,終邊經(jīng)過(guò)點(diǎn)P(x,y),且0≤θ≤π.

(1)若點(diǎn)P的坐標(biāo)為(,),求f(θ)的值;

(2)若點(diǎn)P(x,y)為平面區(qū)域Ω: 上的一個(gè)動(dòng)點(diǎn),試確定角θ的取值范圍,并求函數(shù)f(θ)的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


已知F1、F2為雙曲線C:x2-y2=1的左、右焦點(diǎn),點(diǎn)P在C上,∠F1PF2=60°,則P到x軸的距離為(  )

(A) (B) (C)  (D)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


已知雙曲線-=1(b∈N*)的左、右兩個(gè)焦點(diǎn)為F1、F2,P是雙曲線上的一點(diǎn),且滿足|PF1||PF2|=|F1F2|2,|PF2|<4.

(1)求b的值;

(2)拋物線y2=2px(p>0)的焦點(diǎn)與該雙曲線的右頂點(diǎn)重合,斜率為1的直線經(jīng)過(guò)右頂點(diǎn),與該拋物線交于A、B兩點(diǎn),求弦長(zhǎng)|AB|.

查看答案和解析>>

同步練習(xí)冊(cè)答案