【題目】已知函數(shù)

1)求函數(shù)圖像在處的切線方程;

2)證明:;

3)若不等式對于任意的均成立,求實數(shù)的取值范圍.

【答案】1;(2)證明見解析;(3

【解析】試題分析:(1)利用導數(shù)的幾何意義求曲線在點處的切線方程,注意這個點的切點,利用導數(shù)的幾何意義求切線的斜率;(2)利用導數(shù)方法證明不等式在區(qū)間上恒成立的基本方法是構造函數(shù),然后根據(jù)函數(shù)的單調性,或者函數(shù)的最值證明函數(shù),其中一個重要的技巧就是找到函數(shù)在什么地方可以等于零,這往往就是解決問題的一個突破口,觀察式子的特點,找到特點證明不等式;(3)對于恒成立的問題,常用到兩個結論:(1恒成立,(2恒成立

試題解析:(1 , 又由

得切線,即

2)設,則,令



1




極大值




0


,即

3,,

時,;

時,,不滿足不等式;

時,設,,令,得







極大值




0


綜上

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0)的焦點為F,點K(-1,0)為直線l與拋物線C準線的交點,直線l與拋物線C相交于A,B兩點.

(1)求拋物線C的方程;

(2)設·,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)從某學校高一年級男生中隨機抽取50名測量身高,測量發(fā)現(xiàn)被測學生身高全部介于之間,將測量結果按如下方式分成6組:第1組,第2組,…,第6組,下圖是按上述分組方法得到的頻率分布直方圖.

(1)求這50名男生身高的中位數(shù),并估計該校高一全體男生的平均身高;

(2)求這50名男生當中身高不低于176的人數(shù),并且在這50名身高不低于176的男生中任意抽取2人,求這2人身高都低于180的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有下列命題:(1)終邊相同的角的同名三角比的值相等;(2)終邊不同的角的同名三角比的值不同;(3)若,則是第一或第二象限角;(4中,若,則;其中正確命題的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),若函數(shù)內有兩個極值點,則實數(shù)的取值范圍是( )

A. B. (0,1)

C. (0,2) D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】進入12月以來,某地區(qū)為了防止出現(xiàn)重污染天氣,堅持保民生、保藍天,嚴格落實機動車限行等一系列“管控令”.該地區(qū)交通管理部門為了了解市民對“單雙號限行”的贊同情況,隨機采訪了220名市民,將他們的意見和是否擁有私家車情況進行了統(tǒng)計,得到如下的列聯(lián)表:

贊同限行

不贊同限行

合計

沒有私家車

90

20

110

有私家車

70

40

110

合計

160

60

220

(1)根據(jù)上面的列聯(lián)表判斷,能否在犯錯誤的概率不超過0.001的前提下認為“是否贊同限行與是否擁有私家車”有關;

(2)為了了解限行之后是否對交通擁堵、環(huán)境污染起到改善作用,從上述調查的不贊同限行的人員中按分層抽樣抽取6人,再從這6人中隨機抽出3名進行電話回訪,求3人中至少抽到1名“沒有私家車”人員的概率.

附:.

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)有兩個極值點 ).

(1)求實數(shù)的取值范圍;

(2)設,若函數(shù)的兩個極值點恰為函數(shù)的兩個零點,當時,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】內有一點P(-1,2),AB為過點P且傾斜角為的弦.

(1)當時,求AB的長;

(2)當弦AB被點P平分時,寫出直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某經濟開發(fā)區(qū)規(guī)劃要修建一地下停車場,停車場橫截面是如圖所示半橢圓形AMB,其中AP為2百米,BP為4百米,,M為半橢圓上異于A,B的一動點,且面積最大值為平方百米,如圖建系.

求出半橢圓弧的方程;

若要將修建地下停車場挖出的土運到指定位置P處,N為運土點,以A,B為出口,要使運土最省工,工程部需要指定一條分界線,請求出分界線所在的曲線方程;

若在半橢圓形停車場的上方修建矩形商場,矩形的一邊CDAB平行,設百米,試確定t的值,使商場地面的面積最大.

查看答案和解析>>

同步練習冊答案