【題目】已知函數(shù)有兩個(gè)極值點(diǎn) ).

(1)求實(shí)數(shù)的取值范圍;

(2)設(shè),若函數(shù)的兩個(gè)極值點(diǎn)恰為函數(shù)的兩個(gè)零點(diǎn),當(dāng)時(shí),求的最小值.

【答案】(1).(2). 

【解析】試題分析:(I)求出函數(shù)f(x)的導(dǎo)數(shù),可得方程x2-ax+1=0有兩個(gè)不相等的正根,即可求出a的范圍;(II)對(duì)函數(shù)g(x)求導(dǎo)數(shù),利用極值的定義得出g'(x)=0時(shí)存在兩正根x1,x2;再利用判別式以及根與系數(shù)的關(guān)系,結(jié)合零點(diǎn)的定義,構(gòu)造函數(shù),利用導(dǎo)數(shù)即可求出函數(shù)y的最小值

解析:

(1)的定義域?yàn)?/span>

,

,即,要使上有兩個(gè)極值點(diǎn),

則方程有兩個(gè)不相等的正根,

解得

. 

(2),

由于 的兩個(gè)零點(diǎn),

, ,

兩式相減得:

,

,

設(shè),∵, 的兩根,

,又,

,

解得

因此,

此時(shí),

,

即函數(shù)單調(diào)遞減,

∴當(dāng)時(shí), 取得最小值,

即所求最小值為. 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy 中,曲線C1的參數(shù)方程為:),M是上的動(dòng)點(diǎn),P點(diǎn)滿足,P點(diǎn)的軌跡為曲線

(1)求的參數(shù)方程;

(2)在以O(shè)為極點(diǎn),x 軸的正半軸為極軸的極坐標(biāo)系中,射線的異于極點(diǎn)的交點(diǎn)為A,與的異于極點(diǎn)的交點(diǎn)為B,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)存在極值且這些極值的和不小于,的取值范圍為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

1)求函數(shù)圖像在處的切線方程;

2)證明:;

3)若不等式對(duì)于任意的均成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為研究某種圖書每?jī)?cè)的成本費(fèi)(元)與印刷數(shù)(千冊(cè))的關(guān)系,收集了一些數(shù)據(jù)并作了初步處理,得到了下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

15.25

3.63

0.269

2085.5

0.787

7.049

表中,

(1)根據(jù)散點(diǎn)圖判斷: 哪一個(gè)更適宜作為每?jī)?cè)成本費(fèi)(元)與印刷數(shù)(千冊(cè))的回歸方程類型?(只要求給出判斷,不必說(shuō)明理由)

(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程(回歸系數(shù)的結(jié)果精確到0.01);

(3)若每?jī)?cè)書定價(jià)為10元,則至少應(yīng)該印刷多少冊(cè)才能使銷售利潤(rùn)不低于78840元?(假設(shè)能夠全部售出,結(jié)果精確到1)

(附:對(duì)于一組數(shù)據(jù) ,…, ,其回歸直線的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多邊形中, , , , 是線段上的一點(diǎn),且,若將沿折起,得到幾何體.

(1)試問(wèn):直線與平面是否有公共點(diǎn)?并說(shuō)明理由;

(2)若,且平面平面,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠生產(chǎn)甲、乙兩種產(chǎn)品每噸所需的煤、電和產(chǎn)值如下表所示.

但國(guó)家每天分配給該廠的煤、電有限, 每天供煤至多56噸,供電至多450千瓦,問(wèn)該廠如何安排生產(chǎn),使得該廠日產(chǎn)值最大?最大日產(chǎn)值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1, , , 邊的中點(diǎn),現(xiàn)把沿折疊,使其與構(gòu)成如圖2所示的三棱錐,.

1)求證:平面平面;

2)求平面與平面夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018屆四川省成都市第七中學(xué)高三上學(xué)期模擬】已知橢圓的一個(gè)焦點(diǎn),且過(guò)點(diǎn),右頂點(diǎn)為,經(jīng)過(guò)點(diǎn)的動(dòng)直線與橢圓交于兩點(diǎn).

1)求橢圓的方程;

2是橢圓上一點(diǎn), 的角平分線交軸于,求的長(zhǎng);

3)在軸上是否存在一點(diǎn),使得點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)落在上?若存在,求出的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案