2.已知函數(shù)f(x)滿足f(ab)=f(a)+f(b),且f(2)=p,f(3)=q,那么f(18)=p+2q.

分析 由已知中f(ab)=f(a)+f(b),可得f(18)=f(2)+f(3)+f(3),進而得到答案.

解答 解:∵函數(shù)f(x)滿足f(ab)=f(a)+f(b),
∴f(18)=f(2)+f(3)+f(3),
又∵f(2)=p,f(3)=q,
∴f(18)=p+2q,
故答案為:p+2q

點評 本題考查的知識點是抽象函數(shù)的應用,函數(shù)求值,轉化思想,難度中檔.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.雙曲線$\frac{x^2}{16}-\frac{y^2}{8}=1$的實軸長是( 。
A.2B.$4\sqrt{2}$C.$2\sqrt{2}$D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.春節(jié)是旅游消費旺季,某大型商場通過對春節(jié)前后20天的調查,得到部分日經(jīng)濟收入Q與這20天中的第x天(x∈N+)的部分數(shù)據(jù)如表:
 天數(shù)x(天) 35 79 1113 15
 日經(jīng)濟收入Q(萬元)154180198 208210 204190
(1)根據(jù)表中數(shù)據(jù),結合函數(shù)圖象的性質,從下列函數(shù)模型中選取一個最恰當?shù)暮瘮?shù)模型描述Q與x的變化關系,只需說明理由,不用證明.
①Q=ax+b,②Q=-x2+ax+b,③Q=ax+b,④Q=b+logax.
(2)結合表中的數(shù)據(jù),根據(jù)你選擇的函數(shù)模型,求出該函數(shù)的解析式,并確定日經(jīng)濟收入最高的是第幾天;并求出這個最高值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若冪函數(shù)y=xm是偶函數(shù),且x∈(0,+∞)時為減函數(shù),則實數(shù)m的值可能為(  )
A.-2B.$-\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.集合M={-1,0,1},N={x∈Z|-1<x<1},則M∩N等于(  )
A.{-1,0,1}B.{-1}C.{1}D.{0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.設實數(shù)a∈R,函數(shù)$f(x)=a-\frac{2}{{{2^x}+1}}$是R上的奇函數(shù).
(Ⅰ)求實數(shù)a的值;
(Ⅱ)當x∈(-1,1)時,求滿足不等式f(1-m)+f(1-m2)<0的實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知正數(shù)a,b,c滿足2a-b+c=0,則$\frac{ac}{^{2}}$的最大值為(  )
A.8B.2C.$\frac{1}{8}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.如圖,長方體ABCD-A1B1C1D1中,$AB=BC=\frac{1}{2}A{A_1}$,E為BC的中點,則異面直線A1E與D1C1所成角的正切值為( 。
A.2B.$\frac{{4\sqrt{5}}}{5}$C.$\frac{{\sqrt{17}}}{2}$D.$\frac{{2\sqrt{21}}}{21}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈[0,2π))的圖象,如圖所示,則f(2016)的值為$\frac{{3\sqrt{2}}}{2}$.

查看答案和解析>>

同步練習冊答案