【題目】已知函數(shù).
(1)求函數(shù)的最大值;
(2)若函數(shù)與有相同極值點(diǎn).
①求實(shí)數(shù)的值;
②若對(duì)于(為自然對(duì)數(shù)的底數(shù)),不等式恒成立,
求實(shí)數(shù)的取值范圍.
【答案】(Ⅰ);(Ⅱ)(ⅰ)1; (ⅱ).
【解析】
試題(1)求導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,從而得函數(shù)的最大值;(2)(ⅰ)求導(dǎo)函數(shù),利用函數(shù)與有相同極值點(diǎn),可得是函數(shù)的極值點(diǎn),從而求解的值;(ⅱ)先求出,,,,,再將對(duì)于,不等式恒成立,等價(jià)變形,分類討論,即可求解實(shí)數(shù)的取值范圍.
試題解析:(1),
由得,由得,
∴在上為增函數(shù),在上為減函數(shù),
∴函數(shù)的最大值為;
(2)∵,∴,
(Ⅰ)由(1)知,是函數(shù)的極值點(diǎn),又∵函數(shù)與有相同極值點(diǎn),
∴是函數(shù)的極值點(diǎn),∴,解得,
經(jīng)檢驗(yàn),當(dāng)時(shí),函數(shù)取到極小值,符合題意;
(ⅱ)∵,,, ∵, 即,∴,,
由(ⅰ)知,∴,當(dāng)時(shí),,當(dāng)時(shí),,
故在為減函數(shù),在上為增函數(shù),∵,
而,∴,∴,,
①當(dāng),即時(shí),對(duì)于,不等式恒成立
,
∵,∴,又∵,∴,
②當(dāng),即時(shí),對(duì)于,不等式,
,
∵,∴,又∵,
∴.綜上,所求的實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線:和直線:,是直線上一點(diǎn),過(guò)點(diǎn)做拋物線的兩條切線,切點(diǎn)分別為,,是拋物線上異于,的任一點(diǎn),拋物線在處的切線與,分別交于,,則外接圓面積的最小值為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果一個(gè)棱錐的底面是正方形,且頂點(diǎn)在底面內(nèi)的射影是底面的中心,那么這樣的棱錐叫正四棱錐.若一正四棱錐的體積為18,則該正四棱錐的側(cè)面積最小時(shí),以下結(jié)論正確的是( ).
A.棱的高與底邊長(zhǎng)的比為B.側(cè)棱與底面所成的角為
C.棱錐的高與底面邊長(zhǎng)的比為D.側(cè)棱與底面所成的角為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】生男生女都一樣,女兒也是傳后人.由于某些地區(qū)仍然存在封建傳統(tǒng)思想,頭胎的男女情況可能會(huì)影響生二孩的意愿,現(xiàn)隨機(jī)抽取某地200戶家庭進(jìn)行調(diào)查統(tǒng)計(jì).這200戶家庭中,頭胎為女孩的頻率為0.5,生二孩的頻率為0.525,其中頭胎生女孩且生二孩的家庭數(shù)為60.
(1)完成下列列聯(lián)表,并判斷能否有95%的把握認(rèn)為是否生二孩與頭胎的男女情況有關(guān);
生二孩 | 不生二孩 | 合計(jì) | |
頭胎為女孩 | 60 | ||
頭胎為男孩 | |||
合計(jì) | 200 |
(2)在抽取的200戶家庭的樣本中,按照分層抽樣的方法在生二孩的家庭中抽取了7戶,進(jìn)一步了解情況,在抽取的7戶中再隨機(jī)抽取4戶,求抽到的頭胎是女孩的家庭戶數(shù)的分布列及數(shù)學(xué)期望.
附:
0.15 | 0.05 | 0.01 | 0.001 | |
2.072 | 3.841 | 6.635 | 10.828 |
(其中).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)離心率為3,實(shí)軸長(zhǎng)為1的雙曲線()的左焦點(diǎn)為,頂點(diǎn)在原點(diǎn)的拋物線的準(zhǔn)線經(jīng)過(guò)點(diǎn),且拋物線的焦點(diǎn)在軸上.
(1)求拋物線的方程;
(2)若直線與拋物線交于不同的兩點(diǎn),且滿足,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一家公司生產(chǎn)某種品牌服裝的年固定成本為萬(wàn)元,每生產(chǎn)千件需另投入萬(wàn)元.設(shè)該公司一年內(nèi)共生產(chǎn)該品牌服裝千件并全部銷售完,每千件的銷售收入為萬(wàn)元,且.
(1)寫出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時(shí),該公司在這一品牌服裝的生產(chǎn)中所獲得利潤(rùn)最大?(注:年利潤(rùn)=年銷售收入-年總成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在綜合素質(zhì)評(píng)價(jià)的某個(gè)維度的測(cè)評(píng)中,依據(jù)評(píng)分細(xì)則,學(xué)生之間相互打分,最終將所有的數(shù)據(jù)合成一個(gè)分?jǐn)?shù),滿分100分,按照大于或等于80分的為優(yōu)秀,小于80分的為合格,為了解學(xué)生的在該維度的測(cè)評(píng)結(jié)果,在畢業(yè)班中隨機(jī)抽出一個(gè)班的數(shù)據(jù).該班共有60名學(xué)生,得到如下的列聯(lián)表:
優(yōu)秀 | 合格 | 總計(jì) | |
男生 | 6 | ||
女生 | 18 | ||
合計(jì) | 60 |
已知在該班隨機(jī)抽取1人測(cè)評(píng)結(jié)果為優(yōu)秀的概率為.
(1)完成上面的列聯(lián)表;
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為性別與測(cè)評(píng)結(jié)果有關(guān)系?
(3)現(xiàn)在如果想了解全校學(xué)生在該維度的表現(xiàn)情況,采取簡(jiǎn)單隨機(jī)抽樣方式在全校學(xué)生中抽取少數(shù)一部分來(lái)分析,請(qǐng)你選擇一個(gè)合適的抽樣方法,并解釋理由.
附:
0.25 | 0.10 | 0.025 | |
1.323 | 2.706 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,是等邊三角形,點(diǎn)是上的一點(diǎn),平面平面,,,,,.
(Ⅰ)若點(diǎn)是的中點(diǎn),求證:平面平面;
(Ⅱ)若,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題:函數(shù)在上單調(diào)遞增;命題:函數(shù)在上單調(diào)遞減.
(Ⅰ)若是真命題,求實(shí)數(shù)的取值范圍;
(Ⅱ)若或為真命題,且為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com