分析 (Ⅰ)橢圓C:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1,可得a,b,c=$\sqrt{{a}^{2}-^{2}}$.e=$\frac{c}{a}$=$\frac{1}{2}$,|FA|=2,|AP|=m-4.代入|FA|=|AP|•e,即可得出.
(Ⅱ)要證:∠MPF=∠NPF.等價于證直線MP,NP的傾斜角互補,等價于證:kPM+kPN=0.若直線l的斜率不存在,由橢圓對稱性知,MP,NP關(guān)于x軸對稱,符合題意.若直線l的斜率存在,則設(shè)直線l的方程為:y=k(x-2),M(x1,y1),N(x2,y2.直線方程與橢圓方程聯(lián)立得(4k2+3)x2-16k2x+16k2-48=0.利用斜率計算公式、根與系數(shù)的關(guān)系可得:kPM+kPN=0.
解答 (Ⅰ)解:∵橢圓C:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1,∴a=4,b=2$\sqrt{3}$,c=$\sqrt{{a}^{2}-^{2}}$=2.
e=$\frac{c}{a}$=$\frac{1}{2}$,|FA|=2,|AP|=m-4.
∵|FA|=|AP|•e,∴2=$\frac{1}{2}$(m-4).
∴m=8.
(Ⅱ)證明:要證:∠MPF=∠NPF.
等價于證直線MP,NP的傾斜角互補,
等價于證:kPM+kPN=0.
由(Ⅰ)知,P(8,0),F(xiàn)(2,0).
若直線l的斜率不存在,由橢圓對稱性知,MP,NP關(guān)于x軸對稱,符合題意.
若直線l的斜率存在,則設(shè)直線l的方程為:y=k(x-2),M(x1,y1),N(x2,y2.
聯(lián)立$\left\{\begin{array}{l}{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1}\\{y=k(x-2)}\end{array}\right.$,得(4k2+3)x2-16k2x+16k2-48=0.
可知△>0恒成立,且x1+x2=$\frac{16{k}^{2}}{4{k}^{2}+3}$,x1•x2=$\frac{16{k}^{2}-48}{4{k}^{2}+3}$.
∵kPM+kPN=$\frac{{y}_{1}}{{x}_{1}-8}$+$\frac{{y}_{2}}{{x}_{2}-8}$=$\frac{k({x}_{1}-2)}{{x}_{1}-8}$+$\frac{k({x}_{2}-2)}{{x}_{2}-8}$=$\frac{k({x}_{1}-2)({x}_{2}-8)+k({x}_{2}-2)({x}_{1}-8)}{({x}_{1}-8)({x}_{2}-8)}$=$\frac{2k{x}_{1}{x}_{2}-10k({x}_{1}+{x}_{2})+32k}{({x}_{1}-8)({x}_{2}-8)}$.
分子=2k×$\frac{16{k}^{2}-48}{4{k}^{2}+3}$-10k$\frac{16{k}^{2}}{4{k}^{2}+3}$+32k=$\frac{32{k}^{3}-96k-160{k}^{3}+128{k}^{3}+96k}{4{k}^{2}+3}$=0,
∴∠MPF=∠NPF.
點評 本題考查了橢圓的標準方程及其性質(zhì)、直線與橢圓相交問題、一元二次方程的根與系數(shù)的關(guān)系、斜率計算公式,考查了推理能力與計算能力,屬于難題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-4,+∞) | B. | (-2,+∞) | C. | [-4,-2) | D. | [-4,-2)∪(-2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 2$\sqrt{2}$ | D. | 2.5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com