【題目】已知橢圓的離心率為,橢圓的左焦點為,橢圓上任意點到的最遠距離是,過直線與軸的交點任作一條斜率不為零的直線與橢圓交于不同的兩點、,點關(guān)于軸的對稱點為.
(1)求橢圓的方程;
(2)求證:、、三點共線;
(3)求面積的最大值.
【答案】(Ⅰ);(Ⅱ)證明見解析;(Ⅲ).
【解析】
(Ⅰ)由題意得到關(guān)于a,b,c的方程組,求得a,b的值即可確定橢圓方程;
(Ⅱ)設(shè)直線的方程為,聯(lián)立直線方程與橢圓方程,結(jié)合韋達定理證明即可證得題中的結(jié)論.
(Ⅲ)由題意可得的面積,結(jié)合均值不等式的結(jié)論確定面積的最大值即可.
(Ⅰ)由題意可得:,解得:,
故橢圓的離心率為:.
(Ⅱ)結(jié)合(Ⅰ)中的橢圓方程可得:,故,
設(shè)直線的方程為,
聯(lián)立直線方程與橢圓方程:可得:
.
直線與橢圓相交,則:,
解得:或.
設(shè),,
則:,
故:
將代入上式可得:,
故三點共線;
(Ⅲ)結(jié)合(Ⅱ)中的結(jié)論可得:
的面積
.
當且僅當時等號成立,故的面積的最大值為.
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:極坐標與參數(shù)方程
在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).
(1)求曲線的普通方程;
(2)經(jīng)過點(平面直角坐標系中點)作直線交曲線于, 兩點,若恰好為線段的三等分點,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,點O是對角線AC與BD的交點,AB=2,∠BAD=60°,M是PD的中點.
(Ⅰ)求證:OM∥平面PAB;
(Ⅱ)平面PBD⊥平面PAC;
(Ⅲ)當三棱錐C﹣PBD的體積等于 時,求PA的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前n項和, 是等差數(shù)列,且.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)令.求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)當時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若曲線在點處的切線與曲線切于點,求的值;
(Ⅲ)若恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】美國制裁中興,未來7年一顆芯片都不賣,這卻激發(fā)了中國“芯”的研究熱潮.某公司甲,乙,丙三個研發(fā)小組分別研發(fā),,三種不同的芯片,現(xiàn)在用分層抽樣的方法從這些芯片中抽取若干件進行質(zhì)量分析,有關(guān)數(shù)據(jù)見下表(單位:件).
芯片 | 數(shù)量 | 抽取件數(shù) |
200 | ||
600 | ||
400 | 2 |
(Ⅰ)求的值;
(Ⅱ)若在這抽出的樣品中隨機抽取2件送往某機構(gòu)進行進一步檢測,求這2件芯片來自不同種類的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,E、F分別為PC、BD的中點,側(cè)面PAD⊥底面ABCD.
(1)求證:EF∥平面PAD;
(2)若EF⊥PC,求證:平面PAB⊥平面PCD.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正方形的邊長為4,,分別為,的中點,以為棱將正方形折成如圖所示的的二面角,點在線段上且不與點,重合,直線與由,,三點所確定的平面相交,交點為.
(1)若為的中點,試確定點的位置,并證明直線平面;
(2)若,求的長度,并求此時點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知是橢圓上的一點,從原點向
圓作兩條切線,分別交橢圓于點.
(1)若點在第一象限,且直線互相垂直,求圓的方程;
(2)若直線的斜率存在,并記為,求的值;
(3)試問是否為定值?若是,求出該值;若不是,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com