【題目】已知函數(shù).
(1)證明:對任意的,函數(shù)的圖像與直線最多有一個交點;
(2)設函數(shù),若函數(shù)與函數(shù)的圖像至少有一個交點,求實數(shù)的取值范圍.
【答案】(1)見解析;(2).
【解析】試題分析:兩個函數(shù)圖象的交點個數(shù)問題等價轉化后為方程的解的個數(shù)討論問題,針對參數(shù)b和兩種情況進行討論,研究圖象的交點個數(shù);當研究對數(shù)方程時,利用同底對數(shù)相等,只需真數(shù)大于零且相等,令轉化為二次方程的根的分布問題,根據(jù)判別式等要求,列不等式求解.
試題解析:
(1)證明:原問題等價于解的討論.
因為,即.
當時,方程無解,即兩圖像無交點;
當時,方程有一解,即兩圖像有一個交點,得證.
(2)函數(shù)與函數(shù)的圖像至少有一個交點,等價于方程
至少有一個解.即.
設,即方程至少有一個正解.
當時,即
∵ ∴不符合題意
當時,方程有一個正解,符合題意.
當時,即.此時方程有兩個不同的正解.
綜上所述:實數(shù)的取值范圍是.
轉化成.利用函數(shù)單調性也可以處理.
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)是定義在上的增函數(shù),函數(shù)的圖象關于點對稱.若實數(shù)滿足不等式,則的取值范圍是_______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是定義在R上且以2為周期的偶函數(shù),當0≤x≤1時,f(x)=x2.如果函數(shù)g(x)=f(x)-(x+m)有兩個零點,則實數(shù)m的值為( )
A.2k(k∈Z) B.2k或2k+ (k∈Z)
C.0 D.2k或2k- (k∈Z)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量,,設函數(shù).
(1)若函數(shù)的圖象關于直線對稱,且時,求函數(shù)的單調增區(qū)間;
(2)在(1)的條件下,當時,函數(shù)有且只有一個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著機構改革工作的深入進行,各單位要減員增效,有一家公司現(xiàn)有職員2a人(140<2a<420,且a為偶數(shù)),每人每年可創(chuàng)利b萬元.據(jù)評估,在經營條件不變的前提下,每裁員1人,則留崗職員每人每年多創(chuàng)利0.01b萬元,但公司需付下崗職員每人每年0.4b萬元的生活費,并且該公司正常運轉所需人數(shù)不得小于現(xiàn)有職員的,為獲得最大的經濟效益,該公司應裁員多少人?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】四棱錐P-ABCD的底面ABCD是正方形,E,F分別為AC和PB上的點,它的直觀圖,正視圖,側視圖如圖所示.
(1)求EF與平面ABCD所成角的大;
(2)求二面角B-PA-C的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】國際奧委會將于2017年9月15日在秘魯利馬召開130次會議決定2024年第33屆奧運
會舉辦地。目前德國漢堡、美國波士頓等申辦城市因市民擔心賽事費用超支而相繼退出。某機構為調查我國公民對申辦奧運會的態(tài)度,選了某小區(qū)的100位居民調查結果統(tǒng)計如下:
支持 | 不支持 | 合計 | |
年齡不大于50歲 | 80 | ||
年齡大于50歲 | 10 | ||
合計 | 70 | 100 |
(1)根據(jù)已有數(shù)據(jù),把表格數(shù)據(jù)填寫完整;
(2)能否在犯錯誤的概率不超過5%的前提下認為不同年齡與支持申辦奧運無關?
(3)已知在被調查的年齡大于50歲的支持者中有5名女性,其中2位是女教師,現(xiàn)從這5名女性中隨機抽取3人,求至多有1位教師的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正四棱錐P-ABCD中,底面邊長為2,側棱長為,M,N分別為AB,BC的中點,以O為原點,射線OM,ON,OP分別為x軸、y軸、z軸的正方向建立空間直角坐標系.若E,F分別為PA,PB的中點,求A,B,C,D,E,F的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com