【題目】(I)若, 恒成立,求常數(shù)的取值范.
(Ⅱ)已知非零常數(shù)、滿足,求不等式的解集;
【答案】(1),或;(2),當(dāng)時,原不等式的解集為;當(dāng)時,原不等式的解集為.
【解析】試題分析:(1)問題轉(zhuǎn)化為(1)( 2x+1)0,通過討論的范圍求出不等式的解集,從而求出的范圍即可.
(2)根據(jù)條件可得,進(jìn)而,或,分別討論求解即可.
試題解析:
(1)由已知得,|x |x10,(x )2(x1)2
∴(1)( 2x+1)0,
=1時,( 1)( 2x+1)0恒成立
>1時,由(1)( 2x+1)0得, 2x1,從而 3/p>
<1時,由(1)( 2x+1)0得, 2x1,從而 1
綜上所述,a的取值范圍為(∞,1]∪[3,+∞)…(10分)
(2),∴,
∴,或,
當(dāng)時, , ,
當(dāng)時, ,
∴,或,∴或,
綜上,當(dāng)時,原不等式的解集為;
當(dāng)時,原不等式的解集為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】生活經(jīng)驗(yàn)告訴我們,當(dāng)水注進(jìn)容器(設(shè)單位時間內(nèi)進(jìn)水量相同)時,水的高度隨著時間的變化而變化,在下圖中請選擇與容器相匹配的圖像,A對應(yīng)________;B對應(yīng)________;C對應(yīng)________;D對應(yīng)________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)證明:對任意的,函數(shù)的圖像與直線最多有一個交點(diǎn);
(2)設(shè)函數(shù),若函數(shù)與函數(shù)的圖像至少有一個交點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4;坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)中,曲線.
(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程.
(Ⅱ)求曲線上的點(diǎn)到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知長方形ABCD中,AB=3,AD=4.現(xiàn)將長方形沿對角線BD折起,使AC=a,得到一個四面體A-BCD,如圖所示.
(1)試問:在折疊的過程中,直線AB與CD能否垂直?若能,求出相應(yīng)a的值;若不能,請說明理由;
(2)求四面體A-BCD體積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩袋中各裝有大小相同的小球9個,其中甲袋中紅色、黑色、白色小球的個數(shù)分別為2,3,4,乙袋中紅色、黑色、白色小球的個數(shù)均為3,某人用左右手分別從甲、乙兩袋中取球.
(1)若左右手各取一球,求兩只手中所取的球顏色不同的概率;
(2)若左右手依次各取兩球,稱同一手中兩球顏色相同的取法為成功取法,記兩次取球(左右手依次各取兩球?yàn)閮纱稳∏颍┑某晒θ》ù螖?shù)為隨機(jī)變量X,求X的分布列。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域?yàn)?/span>(-2,2),函數(shù)g(x)=f(x-1)+f(3-2x).
(1)求函數(shù)g(x)的定義域;
(2)若f(x)是奇函數(shù),且在定義域上單調(diào)遞減,求不等式g(x)≤0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017屆河北省衡水中學(xué)高三上學(xué)期六調(diào)】已知函數(shù),其中均為實(shí)數(shù),為自然對數(shù)的底數(shù).
(1)求函數(shù)的極值;
(2)設(shè),若對任意的恒成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com