【題目】如圖,等腰直角中是直角,平面平面,,,.
(1)求證;
(2)求直線與平面所成角的正弦值.
【答案】(1)詳見解析;(2).
【解析】
(1)由及為直角可得到,結合已知條件命題得證。
(2)作,連結.由(1)得: ,作,再證得:平面,則即為所求線面角. 解三角形BFH即可。
解:(1)證明:直角中∠B是直角,即,
, ,
,,
又,.
(2)方法一:作,連結.
由(1)知平面,
得到,又,所以平面.
又因為平面,所以平面 平面.
作于點H,易得平面,
則即為所求線面角.
設,由已知得,,
,,
.
則直線與平面所成角的正弦值為.
方法二:建立如圖所示空間直角坐標系,
因為.
由已知,,,,
,
,,
設平面的法向量為,則有
,令,則.
即.
所以直線與平面所成角的正弦值.
方法三(等積法):設2AF=AB=BE=2,為等腰三角形,AB=BC=2
∠FAB=60°,2AF=AB ,又AF//BE,.
由(1)知,,
,,
,,
又,則有.
令到平面距離為,有,
故所求線面角.
科目:高中數(shù)學 來源: 題型:
【題目】隨著中國經(jīng)濟的加速騰飛,現(xiàn)在手有余錢的中國家庭數(shù)量越來越多,在房價居高不下股市動蕩不定的形勢下,為了讓自己的財富不縮水,很多家庭選擇了投資理財.為了了解居民購買理財產(chǎn)品的情況,理財公司抽樣調(diào)查了該市2018年10戶家庭的年收入和年購買理財產(chǎn)品支出的情況,統(tǒng)計資料如下表:
年收入x(萬元) | 20 | 40 | 40 | 60 | 60 | 60 | 70 | 70 | 80 | 100 |
年理財產(chǎn)品支出y(萬元) | 9 | 14 | 16 | 20 | 21 | 19 | 18 | 21 | 22 | 23 |
(1)由該樣本的散點圖可知y與x具有線性相關關系,請求出回歸方程;(求時利用的準確值,,的最終結果精確到0.01)
(2)若某家庭年收入為120萬元,預測某年購買理財產(chǎn)品的支出.(參考數(shù)據(jù):,,,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場為了了解顧客的購物信息,隨機在商場收集了位顧客購物的相關數(shù)據(jù)如下表:
一次購物款(單位:元) | |||||
顧客人數(shù) |
統(tǒng)計結果顯示位顧客中購物款不低于元的顧客占,該商場每日大約有名顧客,為了增加商場銷售額度,對一次購物不低于元的顧客發(fā)放紀念品.
(Ⅰ)試確定, 的值,并估計每日應準備紀念品的數(shù)量;
(Ⅱ)現(xiàn)有人前去該商場購物,求獲得紀念品的數(shù)量的分布列與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于定義域為D的函數(shù)f(x),若存在區(qū)間[m,n]D,同時滿足下列條件:①f(x)在[m,n]上是單調(diào)的;②當定義域是[m,n]時,f(x)的值域也是[m,n],則稱[m,n]為該函數(shù)的“和諧區(qū)間”.下列函數(shù)存在“和諧區(qū)間”的有( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】目前,新型冠狀病毒感染的肺炎疫情防控形勢嚴峻.口罩的市場需求一直居高不下.為了保障防疫物資供應,濰坊的口罩企業(yè)加足馬力保生產(chǎn),上演了一場與時間賽跑的“防疫阻擊戰(zhàn)”.濰坊市坊子區(qū)一家口罩生產(chǎn)企業(yè)擁有1000平方米潔凈車間,配備國際領先的自動化生產(chǎn)線5條,技術骨干20余人.自疫情發(fā)生以來,該企業(yè)積極響應政府號召,保障每天生產(chǎn)一次性無紡布健康防護口罩5萬只左右.現(xiàn)從生產(chǎn)的大量口罩中抽取了100只作為樣本,檢測一項質(zhì)量指標值,該項質(zhì)量指標值落在區(qū)間[20,40)內(nèi)的產(chǎn)品視為合格品,否則視為不合格品,如圖是樣本的頻率分布直方圖.
(1)求圖中實數(shù)a的值;
(2)企業(yè)將不合格品全部銷毀后,對合格品進行等級細分:質(zhì)量指標值落在區(qū)間[25,30)內(nèi)的定為一等品,每件售價2.4元;質(zhì)量指標值落在區(qū)間[20,25)或[30,35)內(nèi)的定為二等品,每件售價為1.8元;其他的合格品定為三等品,每件售價為1.2元.
用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應等級產(chǎn)品的概率.若有一名顧客隨機購買2只口罩支付的費用為X(單位:元).求X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點為圓的圓心, 是圓上的動點,點在圓的半徑上,且有點和上的點,滿足, .
(1)當點在圓上運動時,求點的軌跡方程;
(2)若斜率為的直線與圓相切,直線與(1)中所求點的軌跡交于不同的兩點, , 是坐標原點,且時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】假設關于某設備的使用年限x(年)和所支出的維修費用y萬元有如下的統(tǒng)計資料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)畫出散點圖并判斷是否線性相關;
(2)如果線性相關,求線性回歸方程;
(3)估計使用年限為10年時,維修費用是多少?
附注:①參考公式:回歸方程中斜率和截距的最小二乘估計分別為;
②參考數(shù)據(jù):
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com