設(shè)S
n為等差數(shù)列{a
n}的前n項(xiàng)和,S
8=4a
3,a
7=-2,則
a
9= ( ).
由已知
即
解得a
1=10,d=-2,a
9=a
1+8d=-6.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)數(shù)列{
bn}滿足
bn+2=-
bn+1-
bn(
n∈N
*),
b2=2
b1.
(1)若
b3=3,求
b1的值;
(2)求證數(shù)列{
bnbn+1bn+2+
n}是等差數(shù)列;
(3)設(shè)數(shù)列{
Tn}滿足:
Tn+1=
Tnbn+1(
n∈N
*),且
T1=
b1=-
,若存在實(shí)數(shù)
p,
q,對(duì)任意
n∈N
*都有
p≤
T1+
T2+
T3+…+
Tn<
q成立,試求
q-
p的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知數(shù)列{an}滿足a1=a(a>0,a∈N*),a1+a2+…+an-pan+1=0(p≠0,p≠-1,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)若對(duì)每一個(gè)正整數(shù)k,若將ak+1,ak+2,ak+3按從小到大的順序排列后,此三項(xiàng)均能構(gòu)成等差數(shù)列,且公差為dk.①求p的值及對(duì)應(yīng)的數(shù)列{dk}.
②記Sk為數(shù)列{dk}的前k項(xiàng)和,問是否存在a,使得Sk<30對(duì)任意正整數(shù)k恒成立?若存在,求出a的最大值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
兩個(gè)正數(shù)a、b的等差中項(xiàng)是
,一個(gè)等比中項(xiàng)是
,且
則雙曲線
的離心率e等于___________;
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知函數(shù)f(x)對(duì)應(yīng)關(guān)系如下表所示,數(shù)列{a
n}滿足:a
1=3,a
n+1=f(a
n),則a
2 012=________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
在等差數(shù)列{an}中,a1=142,d=-2,從第一項(xiàng)起,每隔兩項(xiàng)取出一項(xiàng),構(gòu)成新的數(shù)列{bn},則此數(shù)列的前n項(xiàng)和Sn取得最大值時(shí)n的值是________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知數(shù)列{
an}的前
n項(xiàng)和為
Sn,且滿足
Sn=
n2,數(shù)列{
bn}滿足
bn=
,
Tn為數(shù)列{
bn}的前
n項(xiàng)和.
(1)求數(shù)列{
an}的通項(xiàng)公式
an和
Tn;
(2)若對(duì)任意的
n∈N
*,不等式
λTn<
n+(-1)
n恒成立,求實(shí)數(shù)
λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知等差數(shù)列{an}的公差d≠0,它的第1,5,17項(xiàng)順次成等比數(shù)列,則這個(gè)等比數(shù)列的公比是________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若數(shù)列{a
n}是等差數(shù)列,且a
3+a
7=4,則數(shù)列{a
n}的前9項(xiàng)和S
9等于( )
查看答案和解析>>