已知平面
經(jīng)過點
,且
是它的一個法向量. 類比曲線方程的定義以及求曲線方程的基本步驟,可求得平面
的方程是
.
試題分析:設(shè)平面內(nèi)任意一點為
代入數(shù)據(jù)計算得平面
的方程為
點評:本題類比平面幾何求軌跡方程的方法求解
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)如圖,在平面直坐標系
中,已知橢圓
,經(jīng)過點
,其中
e為橢圓的離心率.且橢圓
與直線
有且只有一個交點。
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)不經(jīng)過原點的直線
與橢圓
相交與
A,
B兩點,第一象限內(nèi)的點
在橢圓上,直線
平分線段
,求:當
的面積取得最大值時直線
的方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
雙曲線
的焦點坐標是 ( )
A.(–2,0),(2,0) | B.(0,–2),(0,2) |
C.(0,–4),(0,4) | D.(–4,0),(4,0) |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若雙曲線
上不存在點P使得右焦點F關(guān)于直線OP(O為雙曲線的中心)的對稱點在y軸上,則該雙曲線離心率的取值范圍為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
是橢圓
上的一動點,且
與橢圓長軸兩頂點連線的斜率之積最小值為
,則橢圓離心率為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知定點A、B,且
,動點P滿足
,則點
的軌跡為( )
A. 雙曲線 B. 雙曲線一支 C.兩條射線 D. 一條射線
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設(shè)
是橢圓E:
的左右焦點,P在直線
上一點,
是底角為
的等腰三角形,則橢圓E的離心率為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
拋物線
的準線方程為
.
查看答案和解析>>