【題目】中國古代儒家要求學(xué)生掌握六種基本才藝:禮、樂、射、御、書、數(shù),簡稱“六藝”,某中學(xué)為弘揚(yáng)“六藝”的傳統(tǒng)文化,分別進(jìn)行了主題為“禮、樂、射、御、書、數(shù)”六場傳統(tǒng)文化知識的競賽,現(xiàn)有甲、乙、丙三位選手進(jìn)入了前三名的最后角逐、規(guī)定:每場知識競賽前三名的得分都分別為,且);選手最后得分為各場得分之和,在六場比賽后,已知甲最后得分為26分,乙和丙最后得分都為11分,且乙在其中一場比賽中獲得第一名,則下列推理正確的是( )

A. 每場比賽第一名得分為4 B. 甲可能有一場比賽獲得第二名

C. 乙有四場比賽獲得第三名 D. 丙可能有一場比賽獲得第一名

【答案】C

【解析】若每場比賽第一名得分為4,則甲最后得分最高為,不合題意; 三人總分為,每場總分?jǐn)?shù)為 分,所以,因此 甲比賽名次為5個(gè)第一,一個(gè)第三;而乙比賽名次有1個(gè)第一,所以丙沒有一場比賽獲得第一名,因此選C.即乙比賽名次為1個(gè)第一,4個(gè)第三,1個(gè)第二.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,以為頂點(diǎn)的六面體中, 均為等邊三角形,且平面平面, 平面 , .

(1)求證: 平面

(2)求此六面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(Ⅰ)若,恒有成立,求實(shí)數(shù)的取值范圍;

(Ⅱ)若函數(shù)有兩個(gè)相異極值點(diǎn), ,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=aln(2x+1)+bx+1.
(1)若函數(shù)y=f(x)在x=1處取得極值,且曲線y=f(x)在點(diǎn)(0,f(0))處的切線與直線2x+y﹣3=0平行,求a的值;
(2)若 ,試討論函數(shù)y=f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)在定義域[﹣1,1]是奇函數(shù),當(dāng)x∈[﹣1,0]時(shí),f(x)=﹣3x2
(1)當(dāng)x∈[0,1],求f(x);
(2)對任意a∈[﹣1,1],x∈[﹣1,1],不等式f(x)≤2cos2θ﹣asinθ+1都成立,求θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某市的中學(xué)生中隨機(jī)調(diào)查了部分男生,獲得了他們的身高數(shù)據(jù),整理得到如下頻率分布直方圖.

Ⅰ)求的值;

假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替,估計(jì)該市中學(xué)生中的全體男生的平均身高;

(Ⅲ)從該市的中學(xué)生中隨機(jī)抽取一名男生,根據(jù)直方圖中的信息,估計(jì)其身高在180 cm 以上的概率.若從全市中學(xué)的男生(人數(shù)眾多)中隨機(jī)抽取人,用表示身高在以上的男生人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 是偶函數(shù),g(x)=t2x+4,
(1)求a的值;
(2)當(dāng)t=﹣2時(shí),求f(x)<g(x)的解集;
(3)若函數(shù)f(x)的圖象總在g(x)的圖象上方,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fn(x)= x3 (n+1)x2+x(n∈N*),數(shù)列{an}滿足an+1=f'n(an),a1=3.
(1)求a2 , a3 , a4
(2)根據(jù)(1)猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明;
(3)求證: + +…+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C的參數(shù)方程是 (α為參數(shù)),直線l的參數(shù)方程為 (t為參數(shù)),
(1)求曲線C與直線l的普通方程;
(2)若直線l與曲線C相交于P,Q兩點(diǎn),且|PQ|= ,求實(shí)數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊答案