三棱錐S-ABC中,∠SBA=∠SCA=90°,△ABC是斜邊AB=a的等腰直角三角形,則以下結(jié)論中:
①異面直線SB與AC所成的角為90°.
②直線SB⊥平面ABC;
③平面SBC⊥平面SAC;
④點(diǎn)C到平面SAB的距離是
1
2
a.
其中正確的個(gè)數(shù)是( 。
A、1B、2C、3D、4
考點(diǎn):平面與平面垂直的判定,異面直線及其所成的角
專題:空間位置關(guān)系與距離
分析:由條件根據(jù)異面直線所成的角,直線和平面垂直的判定定理、性質(zhì)定理,平面和平面垂直的判定定理,判斷各個(gè)選項(xiàng)是否正確,從而得出結(jié)論.
解答: 解:由題意知AC⊥平面SBC,故AC⊥SB,故①正確;
再根據(jù)SB⊥AC、SB⊥AB,可得SB⊥平面ABC,平面SBC⊥平面SAC,故②③正確;
取AB的中點(diǎn)E,連接CE,可證得CE⊥平面SAB,故CE的長(zhǎng)度即為C到平面SAB的距離
1
2
a,④正確,
故選:D.
點(diǎn)評(píng):本題主要考查異面直線所成的角,直線和平面垂直的判定定理、性質(zhì)定理,平面和平面垂直的判定定理的應(yīng)用,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心為原點(diǎn),以坐標(biāo)軸為對(duì)稱軸,且經(jīng)過(-
1
2
3
),(
2
2
,
2
)兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)A(0,1)的直線l交橢圓C于M、N兩點(diǎn),若OM⊥ON,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x|x-2|若存在互不相等的實(shí)數(shù)a,b,c使得f(a)=f(b)=f(c)成立,則a+b+c的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,O為正方體AC1的底面ABCD的中心,異面直線B1O與A1C1所成角的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=2,an+1=
1+an
1-an
(n∈N*),則a1•a2•a3•…•a2008的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=1,Sn為數(shù)列{an}的前n項(xiàng)和,且滿足
2an
anSn-
S
2
n
=1(n≥2)
(1)判斷數(shù)列{
1
Sn
}
是否為等差數(shù)列,并說明理由;
(2)并求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)bn=
1,(n=1)
-
2
nan
,(n≥2)
,令Tn=
1
b1+n
+
1
b2+n
+…+
1
bn+n
,若Tn<m對(duì)n≥2恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,PB⊥底面ABCD,CD⊥PD,底面ABCD為直角梯形,AD∥BC,AB⊥BC,AB=AD=PB=3,點(diǎn)E在棱PA上,且PE=2EA.
(1)求直線PC與平面PAD所成角的余弦值;
(2)求證:PC∥平面EBD;
(3)求二面角A-BE-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從甲、乙、丙、丁四名同學(xué)中選出三名同學(xué),分別參加三個(gè)不同科目的競(jìng)賽,其中甲同學(xué)必須參賽,則不同的參賽方案共有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校1000名學(xué)生的某次數(shù)學(xué)考試成績(jī)X服從正態(tài)分布,其密度函數(shù)曲線如圖,則成績(jī)X位于區(qū)間(53,68]的人數(shù)大約是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案