(滿分12分)已知橢圓的一個頂點為B,離心率
直線l交橢圓于M、N兩點.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(II)如果ΔBMN的重心恰好為橢圓的右焦點F,求直線的方程.

(1); (2)

解析試題分析:(1)由已知,且,即,
,解得,∴橢圓的方程標(biāo)準(zhǔn)為;
(2)橢圓右焦點F的坐標(biāo)為

設(shè)線段MN的中點為Q,
由三角形重心的性質(zhì)知,又,
,故得,
求得Q的坐標(biāo)為
設(shè),則,
,
以上兩式相減得,
,
故直線MN的方程為,即
考點:本題主要考查橢圓的標(biāo)準(zhǔn)方程,橢圓的幾何性質(zhì),直線方程。
點評:中檔題,涉及橢圓的題目,在近些年高考題中是屢見不鮮,往往涉及求橢圓標(biāo)準(zhǔn)方程,研究直線與橢圓的位置關(guān)系。求橢圓的標(biāo)準(zhǔn)方程,主要考慮定義、a,b,c,e的關(guān)系,涉及直線于橢圓位置關(guān)系問題,往往應(yīng)用韋達(dá)定理。本題利用“點差法”較方便的得到了直線的斜率,進(jìn)一步確定得到直線方程。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的長軸長為,焦點是,點到直線的距離為,過點且傾斜角為銳角的直線與橢圓交于兩點,使得.
(1)求橢圓的方程;(2)求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線上任意一點到兩個定點,的距離之和為4.
(1)求曲線的方程;
(2)設(shè)過(0,-2)的直線與曲線交于兩點,且為原點),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
已知橢圓C的中心在坐標(biāo)原點,焦點在x軸上,橢圓右頂點到直線的距離為,離心率
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知A為橢圓與y軸負(fù)半軸的交點,設(shè)直線,是否存在實數(shù)m,使直線與(Ⅰ)中的橢圓有兩個不同的交點M、N,是∣AM∣=∣AN∣,若存在,求出 m的值;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,點為橢圓的右頂點, 點,點在橢圓上, .


(1)求直線的方程;
(2)求直線被過三點的圓截得的弦長;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓 經(jīng)過點其離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓相交于AB兩點,以線段為鄰邊作平行四邊形OAPB,其中頂點P在橢圓上,為坐標(biāo)原點.求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知拋物線經(jīng)過橢圓的兩個焦點.設(shè),又不在軸上的兩個交點,若的重心(中線的交點)在拋物線上,

(1)求的方程.
(2)有哪幾條直線與都相切?(求出公切線方程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
已知橢圓的兩焦點在軸上, 且兩焦點與短軸的一個頂點的連線構(gòu)成斜邊長為2的等腰直角三角形。
(Ⅰ)求橢圓的方程;
(Ⅱ)過點的動直線交橢圓C于A、B兩點,試問:在坐標(biāo)平面上是否存在一個定點Q,使得以AB為直徑的圓恒過點Q ?若存在求出點Q的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖,為橢圓上的一個動點,弦、分別過焦點、,當(dāng)垂直于軸時,恰好有

(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè).
①當(dāng)點恰為橢圓短軸的一個端點時,求的值;
②當(dāng)點為該橢圓上的一個動點時,試判斷是否為定值?
若是,請證明;若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案