已知橢圓 經(jīng)過點(diǎn)其離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓相交于A、B兩點(diǎn),以線段為鄰邊作平行四邊形OAPB,其中頂點(diǎn)P在橢圓上,為坐標(biāo)原點(diǎn).求的取值范圍.
(1) (2) (3)
解析試題分析:解:(Ⅰ)由已知可得,所以3a2=4b2①(1分)
又點(diǎn)在橢圓C上,
所以②(2分)
由①②解之,得a2=4,b2=3.
故橢圓C的方程為.(5分)
(Ⅱ)當(dāng)k=0時(shí),P(0,2m)在橢圓C上,解得,
所以.(6分)
當(dāng)k≠0時(shí),則由
消y化簡(jiǎn)整理得:(3+4k2)x2+8kmx+4m2﹣12=0,
△=64k2m2﹣4(3+4k2)(4m2﹣12)=48(3+4k2﹣m2)>0③(8分)
設(shè)A,B,P點(diǎn)的坐標(biāo)分別為(x1,y1)、(x2,y2)、(x0,y0),
則.(9分)
由于點(diǎn)P在橢圓C上,所以.(10分)
從而,化簡(jiǎn)得4m2=3+4k2,經(jīng)檢驗(yàn)滿足③式.(11分)
又
=
=.(12分)
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1b/c6/1bac6533bfcb066484d5293bfc53e182.png" style="vertical-align:middle;" />,得3<4k2+3≤4,有,
故.(13分)
綜上,所求|OP|的取值范圍是.(14分)
考點(diǎn):直線與圓錐曲線的綜合問題
點(diǎn)評(píng):本題主要考查了直線與圓錐曲線的綜合問題、橢圓的標(biāo)準(zhǔn)方程問題.當(dāng)研究橢圓和直線的關(guān)系的問題時(shí),?衫寐(lián)立方程,進(jìn)而利用韋達(dá)定理來解決
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)點(diǎn)P是曲線C:上的動(dòng)點(diǎn),點(diǎn)P到點(diǎn)(0,1)的距離和它到
焦點(diǎn)F的距離之和的最小值為
(1)求曲線C的方程
(2)若點(diǎn)P的橫坐標(biāo)為1,過P作斜率為的直線交C與另一點(diǎn)Q,交x軸于點(diǎn)M,
過點(diǎn)Q且與PQ垂直的直線與C交于另一點(diǎn)N,問是否存在實(shí)數(shù)k,使得直線MN與曲線C
相切?若存在,求出k的值,若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分13分)已知橢圓:()過點(diǎn),其左、右焦點(diǎn)分別為,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)若是直線上的兩個(gè)動(dòng)點(diǎn),且,則以為直徑的圓是否過定點(diǎn)?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題14分)
已知橢圓()過點(diǎn)(0,2),離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過定點(diǎn)(2,0)的直線與橢圓相交于兩點(diǎn),且為銳角(其中為坐標(biāo)原點(diǎn)),求直線斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分12分)已知橢圓的一個(gè)頂點(diǎn)為B,離心率,
直線l交橢圓于M、N兩點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(II)如果ΔBMN的重心恰好為橢圓的右焦點(diǎn)F,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè)點(diǎn)到直線的距離與它到定點(diǎn)的距離之比為,并記點(diǎn)的軌跡為曲線.
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè),過點(diǎn)的直線與曲線相交于兩點(diǎn),當(dāng)線段的中點(diǎn)落在由四點(diǎn)構(gòu)成的四邊形內(nèi)(包括邊界)時(shí),求直線斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是,直線的參數(shù)方程是(為參數(shù))。
求極點(diǎn)在直線上的射影點(diǎn)的極坐標(biāo);
若、分別為曲線、直線上的動(dòng)點(diǎn),求的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,點(diǎn),點(diǎn)為拋物線的焦點(diǎn),
線段恰被拋物線平分.
(Ⅰ)求的值;
(Ⅱ)過點(diǎn)作直線交拋物線于兩點(diǎn),設(shè)直線、、的斜率分別為、、,問能否成公差不為零的等差數(shù)列?若能,求直線的方程;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題15分)已知點(diǎn)是橢圓E:()上一點(diǎn),F1、F2分別是橢圓E的左、右焦點(diǎn),O是坐標(biāo)原點(diǎn),PF1⊥x軸.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)A、B是橢圓E上兩個(gè)動(dòng)點(diǎn),().求證:直線AB的斜率為定值;
(Ⅲ)在(Ⅱ)的條件下,當(dāng)△PAB面積取得最大值時(shí),求λ的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com