【題目】如圖,設(shè)A是單位圓和x軸正半軸的交點,P,Q是單位圓上兩點,O是坐標原點,且 ,∠AOQ=α,α∈[0,π). (Ⅰ)若點Q的坐標是 ,求 的值;
(Ⅱ)設(shè)函數(shù) ,求f(α)的值域.

【答案】解:(Ⅰ)∵點Q的坐標是 ,∴ . ∴
(Ⅱ) = = =
∵α∈[0,π),則 ,

故f(α)的值域是
【解析】(Ⅰ)根據(jù)三角函數(shù)的定義和題意求出cosα,sinα的值,再由兩角差的余弦公式展開后代入求值;(Ⅱ)根據(jù)向量的數(shù)量積坐標運算和條件代入 ,利用兩角和正弦公式進行化簡,根據(jù)α的范圍和正弦函數(shù)的性質(zhì)求出值域.
【考點精析】掌握兩角和與差的余弦公式是解答本題的根本,需要知道兩角和與差的余弦公式:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】從裝有大小相同的2個紅球和6個白球的袋子中,每摸出2個球為一次試驗,直到摸出的球中有紅球(不放回),則試驗結(jié)束.

(1)求第一次試驗恰摸到一個紅球和一個白球概率;

(2)記試驗次數(shù)為,求的分布列及數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)f(x)=2sin(2x+ )的圖象向右平移φ(φ>0)個單位,再將圖象上每一點橫坐標縮短到原來的 倍,所得圖象關(guān)于直線x= 對稱,則φ的最小正值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足條件(n﹣1)an+1=(n+1)(an﹣1),且a2=6,
(1)計算a1、a3、a4 , 請猜測數(shù)列{an}的通項公式并用數(shù)學歸納法證明;
(2)設(shè)bn=an+n(n∈N*),求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中,正確的序號是 . ①y=﹣2cos( π﹣2x)是奇函數(shù);
②若α,β是第一象限角,且α>β,則sinα>sinβ;
③x=﹣ 是函數(shù)y=3sin(2x﹣ )的一條對稱軸;
④函數(shù)y=sin( ﹣2x)的單調(diào)減區(qū)間是[kπ﹣ ,kπ+ ](k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個四棱錐的三視圖如圖所示,關(guān)于這個四棱錐,下列說法正確的是( )

A. 最長的棱長為

B. 該四棱錐的體積為

C. 側(cè)面四個三角形都是直角三角形

D. 側(cè)面三角形中有且僅有一個等腰三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,其中, .

1)當時,求在點處切線的方程;

2)若函數(shù)在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍;

3)記,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱柱ABCD﹣A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點.

(1)證明B1C1⊥CE;
(2)求二面角B1﹣CE﹣C1的正弦值.
(3)設(shè)點M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為 ,求線段AM的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)y=f(x)是定義在(0,+∞)上的函數(shù),并且滿足下面三個條件: ①對任意正數(shù)x,y,都有f(xy)=f(x)+f(y);
②當x>1時,f(x)>0;
③f(3)=1,
(1)求f(1), 的值;
(2)判斷函數(shù)f(x)在區(qū)間(0,+∞)上單調(diào)性,并用定義給出證明;
(3)對于定義域內(nèi)的任意實數(shù)x,f(kx)+f(4﹣x)<2(k為常數(shù),且k>0)恒成立,求正實數(shù)k的取值范圍.

查看答案和解析>>

同步練習冊答案