10.已知集合A={x|x≥3或x≤1},B={x|2<x<4},則(∁RA)∩B=( 。
A.(1,3)B.(1,4)C.(2,3)D.(2,4)

分析 根據(jù)補集和交集的定義,寫出運算結(jié)果即可.

解答 解:∵集合A={x|x≥3或x≤1},
∴∁RA={x|1<x<3},
又B={x|2<x<4},
∴(∁RA)∩B={x|2<x<3}=(2,3).
故選:C.

點評 本題考查了補集和交集的定義與運算問題,是基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

20.設(shè)集合A={1,2,3,4},則集合A的真子集的個數(shù)為( 。
A.16B.15C.14D.13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知某隨機變量X的概率密度函數(shù)為$P(x)=\left\{\begin{array}{l}0,x≠0\\{e^{-x}},x>0\end{array}\right.$,則隨機變量X落在區(qū)間(1,3)內(nèi)的概率為( 。
A.$\frac{e+1}{e^2}$B.$\frac{{{e^2}-1}}{e^3}$C.e2-eD.e2+e

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設(shè)$a=(\frac{7}{9})^{5}$,$b=(\frac{9}{7})^{\frac{1}{5}}$,$c=lo{g}_{2}\frac{7}{9}$,則a,b,c的大小關(guān)系是( 。
A.b<a<cB.c<a<bC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知P為雙曲線$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$上的動點,點M是圓(x+5)2+y2=4上的動點,點N是圓(x-5)2+y2=1上的動點,則|PM|-|PN|的最大值是9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.在[-4,3]上隨機取一個數(shù)m,能使函數(shù)$f(x)={x}^{2}+\sqrt{2}mx+2$在R上有零點的概率為$\frac{3}{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若函數(shù)y=ksin(kx+φ)(k>0,|φ|<$\frac{π}{2}$)與函數(shù)y=kx-k2+6的部分圖象如圖所示,則函數(shù)f(x)=sin(kx-φ)+cos(kx-φ)圖象的一條對稱軸的方程可以為( 。
A.x=-$\frac{π}{24}$B.x=$\frac{37π}{24}$C.x=$\frac{17π}{24}$D.x=-$\frac{13π}{24}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.關(guān)于x的不等式x2+ax-2<0在區(qū)間[1,4]上恒成立,則實數(shù)a的取值范圍是(  )
A.$(-∞,-\frac{7}{2})$B.(-∞,1)C.$(-\frac{7}{2},+∞)$D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設(shè)函數(shù)f(x)=(1+x)2-2ln(1+x).
(Ⅰ)對任意x0∈[0,1],不等式f(x0)-m≤0恒成立,求實數(shù)m的最小值;
(Ⅱ)若存在x0∈[0,1],使不等式f(x0)-m≤0成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案