【題目】若定義在R上的函數(shù) 滿足 ,其導(dǎo)函數(shù) 滿足 ,則下列結(jié)論中一定錯(cuò)誤的是( )
A.
B.
C.
D.
【答案】C
【解析】由已知條件,構(gòu)造函數(shù)=-Kx,則=-k,故函數(shù)在R上單調(diào)遞增,且>0,故g()>g(0),所以,,所以結(jié)論中一定錯(cuò)誤的是C,選項(xiàng)D無法判斷;構(gòu)造函數(shù)h(x)=f(x)-x,則h'(x)=f'(x)-1>0,所以函數(shù)h(x)在R上單調(diào)遞增,且,所以h()>h(0),即f()->-1,選項(xiàng)A,B無法判斷,故選C。
【考點(diǎn)精析】利用函數(shù)的定義域及其求法和基本求導(dǎo)法則對(duì)題目進(jìn)行判斷即可得到答案,需要熟知求函數(shù)的定義域時(shí),一般遵循以下原則:①是整式時(shí),定義域是全體實(shí)數(shù);②是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù);③是偶次根式時(shí),定義域是使被開方式為非負(fù)值時(shí)的實(shí)數(shù)的集合;④對(duì)數(shù)函數(shù)的真數(shù)大于零,當(dāng)對(duì)數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零;若兩個(gè)函數(shù)可導(dǎo),則它們和、差、積、商必可導(dǎo);若兩個(gè)函數(shù)均不可導(dǎo),則它們的和、差、積、商不一定不可導(dǎo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱錐中,為中點(diǎn),為中點(diǎn),且為正三角形.
(I)求證:平面;
(II)求證:平面平面;
(III)若,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯(cuò)誤的是( )
A. 命題“若x2-4x+3=0,則x=3”的逆否命題是:“若x≠3,則x2-4x+3≠0”
B. “x>1”是“|x|>0”的充分不必要條件
C. 若p且q為假命題,則p、q均為假命題
D. 命題p:“x0∈R使得+x0+1<0”,則p:“x∈R,均有x2+x+1≥0”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)向量 =(cosθ,sinθ), =(﹣ , );
(1)若 ∥ ,且θ∈(0,π),求θ;
(2)若|3 + |=| ﹣3 |,求| + |的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=2 sin(π﹣x)sinx﹣(sinx﹣cosx)2 .
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)把y=f(x)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),再把得到的圖象向左平移 個(gè)單位,得到函數(shù)y=g(x)的圖象,求g( )的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣tx2+3x,若對(duì)于任意的a∈[1,2],b∈(2,3],函數(shù)f(x)在區(qū)間(a,b)上單調(diào)遞減,則實(shí)數(shù)t的取值范圍是( 。
A.(﹣∞,3]
B.(﹣∞,5]
C.[3,+∞)
D.[5,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為(2,0),實(shí)軸長(zhǎng)為.
(1)求雙曲線C的方程;
(2)若直線l:y=kx+與雙曲線C左支交于A、B兩點(diǎn),求k的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若兩直線的傾斜角分別為 與,則下列四個(gè)命題中正確的是( )
A. 若<,則兩直線的斜率:k1 < k2 B. 若=,則兩直線的斜率:k1= k2
C. 若兩直線的斜率:k1 < k2 ,則< D. 若兩直線的斜率:k1= k2 ,則=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知橢圓離心率是,焦點(diǎn)到相應(yīng)準(zhǔn)線的距離是3.
(1)求橢圓的方程;
(2)如圖,設(shè)A是橢圓的左頂點(diǎn),動(dòng)圓過定點(diǎn)E(1,0)和F(7,0),且與直線x=4交于點(diǎn)P,Q.
①求證:AP,AQ斜率的積是定值;
②設(shè)AP,AQ分別與橢圓交于點(diǎn)M,N,求證:直線MN過定點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com