【題目】已知中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為(2,0),實(shí)軸長(zhǎng)為.
(1)求雙曲線C的方程;
(2)若直線l:y=kx+與雙曲線C左支交于A、B兩點(diǎn),求k的取值范圍;
【答案】(1);(2)
【解析】
(1)根據(jù)焦點(diǎn)坐標(biāo)求得,根據(jù)實(shí)軸長(zhǎng)求得,結(jié)合求得,由此求得雙曲線方程.(2)將直線的方程代入雙曲線方程,根據(jù)判別式以及兩根和與兩根的積的情況列出不等式組,解不等式組求得的區(qū)范圍.
(1)設(shè)雙曲線C的方程為-=1(a>0,b>0).
由已知得:a=,c=2,再由a2+b2=c2,∴b2=1,
∴雙曲線C的方程為-y2=1.
(2)設(shè)A(xA,yA)、B(xB,yB),將y=kx+代入-y2=1,
得:(1-3k2)x2-6kx-9=0.
由題意知解得<k<1.
∴當(dāng)<k<1時(shí),l與雙曲線左支有兩個(gè)交點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知梯形與梯形全等, , , , , , 為中點(diǎn).
(Ⅰ)證明: 平面
(Ⅱ)點(diǎn)在線段上(端點(diǎn)除外),且與平面所成角的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列
(1)在等差數(shù)列{an}中,a6=10,S5=5,求該數(shù)列的第8項(xiàng)a8;
(2)在等比數(shù)列{bn}中,b1+b3=10,b4+b6= ,求該數(shù)列的前5項(xiàng)和S5 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義在R上的函數(shù) 滿足 ,其導(dǎo)函數(shù) 滿足 ,則下列結(jié)論中一定錯(cuò)誤的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣2)ex+a(x﹣1)2 .
(1)討論f(x)的單調(diào)性;
(2)若f(x)有兩個(gè)零點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l過直線x﹣y﹣1=0與直線2x+y﹣5=0的交點(diǎn)P.
(1)若l與直線x+3y﹣1=0垂直,求l的方程;
(2)點(diǎn)A(﹣1,3)和點(diǎn)B(3,1)到直線l的距離相等,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在同一個(gè)坐標(biāo)系中畫出函數(shù)y=ax , y=sinax的部分圖象,其中a>0且a≠1,則下列所給圖象中可能正確的是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)P是平行四邊形ABCD所在平面外一點(diǎn),M、N分別是AB、PC的中點(diǎn).
(1)求證:MN∥平面PAD;
(2)在PB上確定一個(gè)點(diǎn)Q,使平面MNQ∥平面PAD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面四個(gè)結(jié)論: ①數(shù)列可以看作是一個(gè)定義在正整數(shù)集(或它的有限子集{1,2,3……,n})上的函數(shù);
②數(shù)列若用圖象表示,從圖象上看都是一群孤立的點(diǎn);
③數(shù)列的項(xiàng)數(shù)是無限的;
④數(shù)列通項(xiàng)的表示式是唯一的.
其中正確的是( )
A.①②
B.①②③
C.②③
D.①②③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com