【題目】已知橢圓的一個(gè)焦點(diǎn)與拋物線(xiàn)的焦點(diǎn)重合,且拋物線(xiàn)的準(zhǔn)線(xiàn)被橢圓截得的弦長(zhǎng)為1是直線(xiàn)上一點(diǎn),過(guò)點(diǎn)且與垂直的直線(xiàn)交橢圓于兩點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)直線(xiàn)的斜率分別為,求證:成等差數(shù)列.

【答案】12)見(jiàn)解析

【解析】

1)根據(jù)弦長(zhǎng)和焦點(diǎn)關(guān)系求解方程;

2)設(shè)直線(xiàn)的方程為,聯(lián)立直線(xiàn)與橢圓的方程,結(jié)合韋達(dá)定理分別計(jì)算的關(guān)系即可得證.

解:

1)拋物線(xiàn)的焦點(diǎn)為,準(zhǔn)線(xiàn)方程為.

又拋物線(xiàn)的準(zhǔn)線(xiàn)被橢圓截得的弦長(zhǎng)為1,所以點(diǎn)在橢圓.

,解得,.故橢圓的標(biāo)準(zhǔn)方程為

2)當(dāng)直線(xiàn)的斜率不存在時(shí),其方程為,代入橢圓方程得兩點(diǎn)坐標(biāo)為、,此時(shí),.

成等差數(shù)列.

當(dāng)直線(xiàn)的斜率存在時(shí),設(shè),直線(xiàn)的方程為,由

,

直線(xiàn)方程為,則,,.

,.

、、成等差數(shù)列,綜上、、成等差數(shù)列.

方法二 設(shè)點(diǎn)、

當(dāng)時(shí),方程為,此時(shí),、、成等差數(shù)列

當(dāng)時(shí),的斜率為,方程為

、成等差數(shù)列

綜上、、成等差數(shù)列.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系。已知曲線(xiàn)C的極坐標(biāo)方程為,過(guò)點(diǎn)的直線(xiàn)l的參數(shù)方程為(為參數(shù)),直線(xiàn)l與曲線(xiàn)C交于M、N兩點(diǎn)。

(1)寫(xiě)出直線(xiàn)l的普通方程和曲線(xiàn)C的直角坐標(biāo)方程:

(2)若成等比數(shù)列,求a的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左焦點(diǎn)為,是橢圓上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)的坐標(biāo)為時(shí),的周長(zhǎng)恰為

(1)求橢圓的方程;

(2)過(guò)點(diǎn)作直線(xiàn)交橢圓于兩點(diǎn),且 ,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,是棱的中點(diǎn).

(1)證明:平面;

(2)若是棱的中點(diǎn),求三棱錐的體積與三棱柱的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一場(chǎng)拋擲骰子的游戲中,游戲者最多有三次機(jī)會(huì)拋擲一顆骰子,游戲規(guī)則如下:拋擲1枚骰子,第1次拋擲骰子向上的點(diǎn)數(shù)為奇數(shù)則記為成功,第2次拋擲骰子向上的點(diǎn)數(shù)為3的倍數(shù)則記為成功,第3次拋擲骰子向上的點(diǎn)數(shù)為6則記為成功.游戲者在前兩次拋擲中至少成功一次才可以進(jìn)行第三次拋擲,其中拋擲骰子不成功得0分,第1次成功得3分,第2次成功得3分,第3次成功得4.

1)求游戲者有機(jī)會(huì)第3次拋擲骰子的概率;

2)設(shè)游戲者在一場(chǎng)拋擲骰子游戲中所得的分?jǐn)?shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,有兩個(gè)圓,其中,為正常數(shù),滿(mǎn)足,一個(gè)動(dòng)圓與兩圓都相切,則動(dòng)圓圓心的軌跡方程可以是(

A.兩個(gè)橢圓B.兩個(gè)雙曲線(xiàn)

C.一個(gè)雙曲線(xiàn)和一條直線(xiàn)D.一個(gè)橢圓和一個(gè)雙曲線(xiàn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解關(guān)于的不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直三棱柱中,,的中點(diǎn).

(I)若上的一點(diǎn),且與直線(xiàn)垂直,求的值;

(Ⅱ)在(I)的條件下,設(shè)異面直線(xiàn)所成的角為45°,求直線(xiàn)與平面成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn)的參數(shù)方程為為參數(shù)),,為曲線(xiàn)上的一動(dòng)點(diǎn).

(I)求動(dòng)點(diǎn)對(duì)應(yīng)的參數(shù)從變動(dòng)到時(shí),線(xiàn)段所掃過(guò)的圖形面積;

(Ⅱ)若直線(xiàn)與曲線(xiàn)的另一個(gè)交點(diǎn)為,是否存在點(diǎn),使得為線(xiàn)段的中點(diǎn)?若存在,求出點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案