【題目】已知,
(1)求在處的切線方程以及的單調(diào)性;
(2)對,有恒成立,求的最大整數(shù)解;
(3)令,若有兩個零點分別為,且為的唯一的極值點,求證:.
【答案】(1)切線方程為;單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為(2)的最大整數(shù)解為(3)證明見解析
【解析】
(1)求出函數(shù)的導(dǎo)數(shù),求出,即可得到切線方程,解得到單調(diào)遞增區(qū)間,解得到單調(diào)遞減區(qū)間,需注意在定義域范圍內(nèi);
(2)等價于,求導(dǎo)分析的單調(diào)性,即可求出的最大整數(shù)解;
(3)由,求出導(dǎo)函數(shù)分析其極值點與單調(diào)性,構(gòu)造函數(shù)即可證明;
解:(1)
所以定義域為
;
;
所以切線方程為;
,
令解得
令解得
所以的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.
(2)等價于;
,
記,,所以為上的遞增函數(shù),
且,,所以,使得
即,
所以在上遞減,在上遞增,
且;
所以的最大整數(shù)解為.
(3),得,
當(dāng),,,;
所以在上單調(diào)遞減,上單調(diào)遞增,
而要使有兩個零點,要滿足,
即;
因為,,令,
由,,
即:,
而要證,
只需證,
即證:
即:由,只需證:,
令,則
令,則
故在上遞增,;
故在上遞增,;
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè).
(1)當(dāng)時,f(x)的最小值是_____;
(2)若f(0)是f(x)的最小值,則a的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是數(shù)列的前n項和,對任意都有,(其中k、b、p都是常數(shù)).
(1)當(dāng)、、時,求;
(2)當(dāng)、、時,若、,求數(shù)列的通項公式;
(3)若數(shù)列中任意(不同)兩項之和仍是該數(shù)列中的一項,則稱該數(shù)列是“封閉數(shù)列”。當(dāng)、、時,.試問:是否存在這樣的“封閉數(shù)列”.使得對任意.都有,且.若存在,求數(shù)列的首項的所有取值的集合;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】黃岡“一票通”景區(qū)旅游年卡,是由黃岡市旅游局策劃,黃岡市大別山旅游公司推出的一項惠民工程,持有旅游年卡一年內(nèi)可不限次暢游全市19家簽約景區(qū).為了解市民每年旅游消費支出情況單位:百元,相關(guān)部門對已游覽某簽約景區(qū)的游客進(jìn)行隨機(jī)問卷調(diào)查,并把得到的數(shù)據(jù)列成如表所示的頻數(shù)分布表:
組別 | |||||
頻數(shù) | 10 | 390 | 400 | 188 | 12 |
求所得樣本的中位數(shù)精確到百元;
根據(jù)樣本數(shù)據(jù),可近似地認(rèn)為市民的旅游費用支出服從正態(tài)分布,若該市總?cè)丝跒?/span>750萬人,試估計有多少市民每年旅游費用支出在7500元以上;
若年旅游消費支出在百元以上的游客一年內(nèi)會繼續(xù)來該景點游玩現(xiàn)從游客中隨機(jī)抽取3人,一年內(nèi)繼續(xù)來該景點游玩記2分,不來該景點游玩記1分,將上述調(diào)查所得的頻率視為概率,且游客之間的選擇意愿相互獨立,記總得分為隨機(jī)變量X,求X的分布列與數(shù)學(xué)期望.
參考數(shù)據(jù):,;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的右焦點為,離心率為,過點且與軸垂直的直線被橢圓截得的線段長為 .
(1)求橢圓的方程;
(2)若上存在兩點,橢圓上存在兩個點滿足:三點共線,三點共線,且,求四邊形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓的離心率為,點在橢圓上.
(1)求橢圓的方程;
(2)設(shè)直線與圓相切,與橢圓相交于兩點,求證:是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義域是一切實數(shù)的函數(shù),其圖像是連續(xù)不斷的,且存在常數(shù)()使得
對任意實數(shù)都成立,則稱是一個“—伴隨函數(shù)”.有下列關(guān)于“—伴隨函數(shù)”的結(jié)論:
①是常數(shù)函數(shù)中唯一一個“—伴隨函數(shù)”;
②“—伴隨函數(shù)”至少有一個零點;
③是一個“—伴隨函數(shù)”;
其中正確結(jié)論的個數(shù)是 ( )
A.1個;B.2個;C.3個;D.0個;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,過點且斜率為 的直線和以橢圓的右頂點為圓心,短半軸為半徑的圓相切.
(1)求橢圓的方程;
(2)橢圓的左、右頂點分為A,B,過右焦點的直線l交橢圓于P,Q兩點,求四邊形APBQ面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線,直線經(jīng)過點與相交于、兩點.
(1)若且,求證: 必為的焦點;
(2)設(shè),若點在上,且的最大值為,求的值;
(3)設(shè)為坐標(biāo)原點,若,直線的一個法向量為,求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com