【題目】過拋物線的焦點且斜率為1的直線與拋物線交于、兩點,且.

1)求拋物線的方程;

2)點是拋物線上異于、的任意一點,直線、與拋物線的準線分別交于點、,求證:為定值.

【答案】1;(2)證明見解析

【解析】

1)根據(jù)題意,設(shè)直線,與拋物線方程聯(lián)立,再利用拋物線定義,由求解.

2)設(shè),得到直線,令,得到,再根據(jù)點均在拋物線 ,將,,代入化簡得到,同理可得點的縱坐標為,然后由數(shù)量積坐標運算求解.

1)由題意知,則直線,

代入拋物線,化簡得,

設(shè),則

因拋物線的準線方程為,

由拋物線的定義得

故拋物線的方程為.

2)設(shè),則直線,

時,,

∵點均在拋物線

,

即點的縱坐標為

同理可得點的縱坐標為,

,

由(1)知,

,為定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司培訓(xùn)員工某項技能,培訓(xùn)有如下兩種方式:

方式一:周一到周五每天培訓(xùn)1小時,周日測試

方式二:周六一天培訓(xùn)4小時,周日測試

公司有多個班組,每個班組60人,現(xiàn)任選兩組記為甲組、乙組先培訓(xùn);甲組選方式一,乙組選方式二,并記錄每周培訓(xùn)后測試達標的人數(shù)如表:

第一周

第二周

第三周

第四周

甲組

20

25

10

5

乙組

8

16

20

16

用方式一與方式二進行培訓(xùn),分別估計員工受訓(xùn)的平均時間精確到,并據(jù)此判斷哪種培訓(xùn)方式效率更高?

在甲乙兩組中,從第三周培訓(xùn)后達標的員工中采用分層抽樣的方法抽取6人,再從這6人中隨機抽取2人,求這2人中至少有1人來自甲組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,直線與函數(shù)的圖象在處相切,設(shè),若在區(qū)間[1,2]上,不等式恒成立.則實數(shù)m( )

A. 有最大值 B. 有最大值e C. 有最小值e D. 有最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,以為極點,軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,曲線的極坐標方程為,曲線的極坐標方程為

(Ⅰ)求的直角坐標方程;

(Ⅱ)若的交于點,交于、兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,側(cè)面是菱形,.

(I)證明:;

(II)若,求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的極值.

2)是否存在實數(shù),使得函數(shù)上的最小值為0?若存在,試求出的值:若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)求函數(shù)的極值;

(2)設(shè),對于任意,總有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,.

1)若函數(shù)上是單調(diào)函數(shù),求實數(shù)的取值范圍;

2)當時,是否存在,使得的圖象在處的切線互相平行,若存在,請給予證明,若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是(

A.已知冪函數(shù)上單調(diào)遞減則

B.函數(shù)的有兩個零點,一個大于0,一個小于0的一個充分不必要條件是

C.已知函數(shù),若,則的取值范圍為

D.已知函數(shù)滿足,,且的圖像的交點為的值為8

查看答案和解析>>

同步練習(xí)冊答案