cos45°cos15°+sin15°sin45°的值為
 
考點:兩角和與差的余弦函數(shù)
專題:計算題,三角函數(shù)的求值
分析:由兩角和與差的余弦函數(shù)公式化簡后即可求值.
解答: 解:cos45°cos15°+sin15°sin45°=cos(45°-15°)=cos30°=
3
2

故答案為:
3
2
點評:本題主要考察了兩角和與差的余弦函數(shù),屬于基本知識的考查.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,且a=2,sinB+sinC=
3
sinA,△ABC的面積S=
4
3
sinA,則角A=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=loga(x-1),g(x)=loga(6-2x)(a>0且a≠1).
(1)求函數(shù)φ(x)=f(x)+g(x)的定義域;
(2)試確定不等式f(x)≤g(x)中x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a、b是正整數(shù),F(xiàn)1、F2是兩個定點,且滿足|F1F2|=2a,動點P滿足|PF1|+|PF2|=a2+b2,則動點P的軌跡是( 。
A、橢圓B、線段
C、橢圓或線段D、圓

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c和一次函數(shù)g(x)=-bx,其中a,b,c滿足a>b>c,a+b+c=0(a,b,c∈R).
(1)求證:兩函數(shù)圖象交于不同的兩點A、B.
(2)求證:方程f(x)-g(x)=0的兩根均小于2.
(3)求線段AB在x軸上的射影A1B1的長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,則“acosA=bcosB”是“△ABC是以A,B為底角的等腰三角形”的( 。
A、充分非必要條件
B、必要非充分條件
C、充要條件
D、既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A,B是拋物線y2=4x上異于頂點O的兩個點,直線OA與直線OB的斜率之積為定值-4,△AOF,△BOF的面積為S1,S2,則S12+S22的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,已知動點P滿足PM⊥y軸,垂足為M,點N與點P關(guān)于x軸對稱,且
OP
MN
=4,求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)與g(x)分別由下表給出

x

1

2

3

4

f(x)

4

3

2

1

x

1

2

3

4

g(x)

3

1

4

2
那么f(g(3))=(  )
A、1B、2C、3D、4

查看答案和解析>>

同步練習冊答案