已知圓A:(x+2)2+y2=36,圓A內(nèi)一定點(diǎn)B(2,0),圓P過(guò)B點(diǎn)且與圓A內(nèi)切,則圓心P的軌跡為( 。
A、圓B、橢圓
C、直線(xiàn)D、以上都不對(duì)
考點(diǎn):軌跡方程
專(zhuān)題:綜合題,圓錐曲線(xiàn)的定義、性質(zhì)與方程
分析:設(shè)動(dòng)圓圓心P,半徑為r,利用兩圓相切內(nèi)切,兩圓心距和兩半徑之間的關(guān)系列出PA和PB的關(guān)系式,正好符合橢圓的定義,利用定義法求軌跡方程即可.
解答: 解:設(shè)動(dòng)圓圓心P(x,y),半徑為r,⊙A的圓心為A(-2,0),半徑為6,
又因?yàn)閯?dòng)圓過(guò)點(diǎn)B,所以r=|PB|,
若動(dòng)圓P與⊙A相內(nèi)切,則有|PA|=6-r=6-|PB|,即|PA|+|PB|=6>|AB|=4
故P點(diǎn)的軌跡為以A和B為焦點(diǎn)的橢圓,且a=3,c=2.
故選:B.
點(diǎn)評(píng):定義法是求圓錐曲線(xiàn)中軌跡方程的重要方法,本題的關(guān)鍵是根據(jù)動(dòng)圓P與⊙A相內(nèi)切,確定|PA|+|PB|=6>|AB|=4.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,b=3,c=1,A=60°,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=xsinx,記m=f(-
1
2
),n=f(
1
3
),則下列關(guān)系正確的是(  )
A、m<0<n
B、0<n<m
C、0<m<n
D、n<m<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f0(x)=xex,f1(x)=f0′(x),f2(x)=f1′(x),…fn(x)=fn-1′(x)(n∈N*)則f2014′(0)=( 。
A、2013B、2014
C、2015D、2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x,y均為區(qū)間(0,1)的隨機(jī)數(shù),則2x-y>0的概率為(  )
A、
1
8
B、
1
4
C、
1
2
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

線(xiàn)性回歸方程表示的直線(xiàn)
y
=a+bx,必定過(guò)(  )
A、(0,0)點(diǎn)
B、(
.
x
,0)點(diǎn)
C、(0,
.
y
)點(diǎn)
D、(
.
x
,
.
y
)點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在下列命題中,正確命題的個(gè)數(shù)是( 。
①兩個(gè)復(fù)數(shù)不能比較大;
②復(fù)數(shù)z=i-1對(duì)應(yīng)的點(diǎn)在第四象限;
③若(x2-1)+(x2+3x+2)i是純虛數(shù),則實(shí)數(shù)x=±1;
④若(z1-z22+(z2-z32=0,則z1=z2=z3
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線(xiàn)l1:ax-y+b=0,l2:bx-y+a=0(a、b≠0,a≠b)在同一坐標(biāo)系中的圖形大致是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x+1-a
a-x
(a∈R且x≠a).
(1)證明:對(duì)定義域內(nèi)所有x,f(x)+2+f(2a-x)恒為定值;
(2)設(shè)函數(shù)g(x)=x2+|(x-a)f(x)|,求g(x)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案