【題目】已知函數(shù)

1當(dāng),討論的單調(diào)性

2若對任意的,恒有成立,求實(shí)數(shù)的取值范圍

【答案】1當(dāng),函數(shù)在定義域內(nèi)單調(diào)遞減,函數(shù)在區(qū)間,為減函數(shù),在區(qū)間為增函數(shù),當(dāng),在區(qū)間,為減函數(shù),在區(qū)間為增函數(shù);2.

【解析】

試題分析:1先對函數(shù)求導(dǎo),比較的大小關(guān)系,得出單調(diào)區(qū)間;2恒成立問題的轉(zhuǎn)化,求出函數(shù)的最大值,得出結(jié)果.

試題解析:1,,,,

當(dāng),,函數(shù)在定義域內(nèi)單調(diào)遞減;

當(dāng),在區(qū)間,,單調(diào)遞減,在區(qū)間,單調(diào)遞增

當(dāng),在區(qū)間,,單調(diào)遞減在區(qū)間,單調(diào)遞增

21知當(dāng),函數(shù)在區(qū)間單調(diào)遞減;

所以當(dāng),,

問題等價于:對任意的,恒有成立,

,因?yàn)?/span>,所以,

實(shí)數(shù)的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本題滿分14本題共有2個小題,第1小題滿分6分,第2小題滿分8

沙漏是古代的一種計(jì)時裝置,它由兩個形狀完全相同的容器和一個狹窄的連接管道組成,開始時細(xì)沙全部在上部容器中,細(xì)通過連接管道全部到下部容器所需要的時間稱為該沙漏的一個沙時。如圖,某沙漏由上下兩個圓錐組成,圓錐的底面直徑和高均為8cm,細(xì)沙全部在上部時,高度為圓錐高度的細(xì)管長忽略不計(jì)

1如果該沙漏每秒鐘漏下0.02cm3的沙,則該沙漏的一個沙時為多少秒精確1秒?

2細(xì)全部漏入下部,恰好堆成一蓋沙漏底的圓錐形沙,求此錐形高度精確0.1cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù).以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,圓的方程為.

寫出直線的普通方程和圓的直角坐標(biāo)方程;

若點(diǎn)的直角坐標(biāo)為,圓與直線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且.

(1)求數(shù)列的通項(xiàng)公式,并寫出推理過程;

(2)令,試比較的大小,并給出你的證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長為1的正方體ABCD—A1B1C1D1中,

MN分別是AB1、BC1的中點(diǎn).

(Ⅰ)求證:直線MN//平面ABCD.

(Ⅱ)求B1到平面A1BC1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)將100名高二文科生分成水平相同的甲、乙兩個“平行班”,每班50人.陳老師采用AB兩種不同的教學(xué)方式分別在甲、乙兩個班進(jìn)行教改實(shí)驗(yàn).為了了解教學(xué)效果,期末考試后,陳老師對甲、乙兩個班級的學(xué)生成績進(jìn)行統(tǒng)計(jì)分析,畫出頻率分布直方圖(如下圖).記成績不低于90分者為“成績優(yōu)秀”.

(Ⅰ)根據(jù)頻率分布直方圖填寫下面2×2列聯(lián)表;

甲班(A方式)

乙班(B方式)

總計(jì)

成績優(yōu)秀

成績不優(yōu)秀

總計(jì)

(Ⅱ)判斷能否在犯錯誤的概率不超過0.05的前提下認(rèn)為:“成績優(yōu)秀”與教學(xué)方式有關(guān)?

附:.

P(K2k)

0.25

0.15

0.10

0.05

0.025

k

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】空間中任意放置的棱長為2的正四面體.下列命題正確的是_________.(寫出所有正確的命題的編號)

①正四面體的主視圖面積可能是

②正四面體的主視圖面積可能是;

③正四面體的主視圖面積可能是;

④正四面體的主視圖面積可能是2

⑤正四面體的主視圖面積可能是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】汽車廠生產(chǎn)三類轎車,每類轎車均有舒適型和標(biāo)準(zhǔn)型兩類型號,某月的產(chǎn)量如下表:(單位:輛). 按類用分層抽樣的方法在這個月生產(chǎn)的轎車中抽取50輛,其中有類轎車10輛.

(1)求的值;

(2)用分層抽樣的方法在類轎車中抽取一個容量為5的樣本,從中任取2輛,求至少有1輛舒適型轎車的概率;

(3)用隨機(jī)抽樣的方法從類舒適型轎車中抽取8輛,經(jīng)檢測它們的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把這8輛轎車的得分看成一個總體,從中任取一個數(shù),求該數(shù)與樣本平均數(shù)之差的絕對值不超過0.5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且直線是函數(shù)的一條切線.

(1)求的值;

(2)對任意的,都存在,使得,求的取值范圍;

(3)已知方程有兩個根,若,求證: .

查看答案和解析>>

同步練習(xí)冊答案