【題目】已知函數(shù).
(1)當(dāng)時,討論的單調(diào)性;
(2)若對任意的,,恒有成立,求實數(shù)的取值范圍.
【答案】(1)當(dāng)時,函數(shù)在定義域內(nèi)單調(diào)遞減;時,函數(shù)在區(qū)間,上為減函數(shù),在區(qū)間上為增函數(shù),當(dāng)時,在區(qū)間,上為減函數(shù),在區(qū)間上為增函數(shù);(2).
【解析】
試題分析:(1)先對函數(shù)求導(dǎo),比較的大小關(guān)系,得出單調(diào)區(qū)間;(2)恒成立問題的轉(zhuǎn)化,求出函數(shù)的最大值,得出結(jié)果.
試題解析:(1),令,得,,
當(dāng)時,,函數(shù)在定義域內(nèi)單調(diào)遞減;
當(dāng)時,在區(qū)間,上,單調(diào)遞減,在區(qū)間上,單調(diào)遞增;
當(dāng)時,在區(qū)間,上,單調(diào)遞減,在區(qū)間上,單調(diào)遞增.
(2)由(1)知當(dāng)時,函數(shù)在區(qū)間單調(diào)遞減;
所以當(dāng)時,,.
問題等價于:對任意的,恒有成立,
即,因為,所以,
∴實數(shù)的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2小題滿分8分
沙漏是古代的一種計時裝置,它由兩個形狀完全相同的容器和一個狹窄的連接管道組成,開始時細沙全部在上部容器中,細沙通過連接管道全部流到下部容器所需要的時間稱為該沙漏的一個沙時。如圖,某沙漏由上下兩個圓錐組成,圓錐的底面直徑和高均為8cm,細沙全部在上部時,其高度為圓錐高度的(細管長度忽略不計).
(1)如果該沙漏每秒鐘漏下0.02cm3的沙,則該沙漏的一個沙時為多少秒(精確到1秒)?
(2)細沙全部漏入下部后,恰好堆成個一蓋住沙漏底部的圓錐形沙堆,求此錐形沙堆的高度(精確到0.1cm).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點為極點,軸正半軸為極軸建立極坐標(biāo)系,圓的方程為.
(Ⅰ)寫出直線的普通方程和圓的直角坐標(biāo)方程;
(Ⅱ)若點的直角坐標(biāo)為,圓與直線交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為,且.
(1)求數(shù)列的通項公式,并寫出推理過程;
(2)令,,試比較與的大小,并給出你的證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長為1的正方體ABCD—A1B1C1D1中,
M、N分別是AB1、BC1的中點.
(Ⅰ)求證:直線MN//平面ABCD.
(Ⅱ)求B1到平面A1BC1的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)將100名高二文科生分成水平相同的甲、乙兩個“平行班”,每班50人.陳老師采用A,B兩種不同的教學(xué)方式分別在甲、乙兩個班進行教改實驗.為了了解教學(xué)效果,期末考試后,陳老師對甲、乙兩個班級的學(xué)生成績進行統(tǒng)計分析,畫出頻率分布直方圖(如下圖).記成績不低于90分者為“成績優(yōu)秀”.
(Ⅰ)根據(jù)頻率分布直方圖填寫下面2×2列聯(lián)表;
甲班(A方式) | 乙班(B方式) | 總計 | |
成績優(yōu)秀 | |||
成績不優(yōu)秀 | |||
總計 |
(Ⅱ)判斷能否在犯錯誤的概率不超過0.05的前提下認(rèn)為:“成績優(yōu)秀”與教學(xué)方式有關(guān)?
附:.
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】空間中任意放置的棱長為2的正四面體.下列命題正確的是_________.(寫出所有正確的命題的編號)
①正四面體的主視圖面積可能是;
②正四面體的主視圖面積可能是;
③正四面體的主視圖面積可能是;
④正四面體的主視圖面積可能是2
⑤正四面體的主視圖面積可能是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】汽車廠生產(chǎn)三類轎車,每類轎車均有舒適型和標(biāo)準(zhǔn)型兩類型號,某月的產(chǎn)量如下表:(單位:輛). 按類用分層抽樣的方法在這個月生產(chǎn)的轎車中抽取50輛,其中有類轎車10輛.
(1)求的值;
(2)用分層抽樣的方法在類轎車中抽取一個容量為5的樣本,從中任取2輛,求至少有1輛舒適型轎車的概率;
(3)用隨機抽樣的方法從類舒適型轎車中抽取8輛,經(jīng)檢測它們的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把這8輛轎車的得分看成一個總體,從中任取一個數(shù),求該數(shù)與樣本平均數(shù)之差的絕對值不超過0.5的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且直線是函數(shù)的一條切線.
(1)求的值;
(2)對任意的,都存在,使得,求的取值范圍;
(3)已知方程有兩個根,若,求證: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com