【題目】已知數(shù)列的前項和為,且.
(1)求數(shù)列的通項公式,并寫出推理過程;
(2)令,,試比較與的大小,并給出你的證明.
【答案】(Ⅰ);(Ⅱ),證明見解析.
【解析】試題分析:(Ⅰ)由題意可根據(jù)數(shù)列通項與前項和之間的關系來進行求解,即當時,;當時,,這時可得到與的關系式,根據(jù)關系式的特點,可通過構(gòu)造換元,令,從而得出數(shù)列是等差數(shù)列,先求出數(shù)列的通項,再求出數(shù)列的通項;(Ⅱ)根據(jù)數(shù)列的特點可利用錯位相減法求出,接著利用作差法進行比較,根據(jù)差式的特點這里可采用數(shù)學歸納法進行猜想證明,詳見解析.
試題解析:(Ⅰ)在中,令,可得,即,
當時,,∴,
∴,即,
設,則,即當時,,
又,∴數(shù)列是首項和公差均為1的等差數(shù)列.
于是,∴
(Ⅱ)由(Ⅰ)得,
所以,
由①-②,
得
∴,則
于是只要比較與的大小即可,
(1)當時,,此時,即,
(2)猜想:當時,,下面用數(shù)學歸納法證明:
①當時,不等式成立;②假設時,不等式成立,即;
則當時,,
所以當時,不等式成立,
由①和②可知,當時,成立,
于是,當時,,即.
另證:要證,只要證:,只要證:,
由均值不等式得:,
所以,于是當時,,即.
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列{an}的前n項和為Sn=2n2,{bn}為等比數(shù)列,且a1=b1,b2(a2-a1)=b1.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)設cn=,求數(shù)列{cn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某初級中學有三個年級,各年級男、女人數(shù)如下表:
初一年級 | 初二年級 | 初三年級 | |
女生 | 370 | 200 | |
男生 | 380 | 370 | 300 |
已知在全校學生中隨機抽取1名,抽到初二年級女生的概率是0.19.
(1)求的值;
(2)用分層抽樣的方法在初三年級中抽取一個容量為5的樣本,求該樣本中女生的人數(shù);
(3)用隨機抽樣的方法從初二年級女生中選出8人,測量它們的左眼視力,結(jié)果如下:1.2,1.5,1.2,1.5,1.5,1.3,1.0,1.2.把這8人的左眼視力看作一個總體,從中任取一個數(shù),求該數(shù)與樣本平均數(shù)之差的絕對值不超過0.1的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學舉行了一次“環(huán)保知識競賽”, 全校學生參加了這次競賽.為了了解本次競賽成績情況,從中抽取了部分學生的成績(得分取正整數(shù),滿分為100分)作為樣本進行統(tǒng)計.請根據(jù)下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示)解決下列問題:
| 分組 | 頻數(shù) | 頻率 |
第1組 | [50,60) | 8 | 0 16 |
第2組 | [60,70) | a | ▓ |
第3組 | [70,80) | 20 | 0 40 |
第4組 | [80,90) | ▓ | 0 08 |
第5組 | [90,100] | 2 | b |
合計 | ▓ | ▓ |
(1)求出的值;
(2)在選取的樣本中,從競賽成績是80分以上(含80分)的同學中隨機抽取2名同學到廣場參加環(huán)保知識的志愿宣傳活動
(ⅰ)求所抽取的2名同學中至少有1名同學來自第5組的概率;
(ⅱ)求所抽取的2名同學來自同一組的概率
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校對高一年級學生寒假參加社區(qū)服務的次數(shù)進行了統(tǒng)計,隨機抽取了名學生作為樣本,得到這名學生參加社區(qū)服務的次數(shù),根據(jù)此數(shù)據(jù)作出了頻率分布統(tǒng)計表和頻率分布直方圖如下:
(1)求表中的值和頻率分布直方圖中的值,并根據(jù)頻率分布直方圖估計該校高一學生寒假參加社區(qū)服務次數(shù)的中位數(shù);
(2)如果用分層抽樣的方法從樣本服務次數(shù)在和的人中共抽取6人,再從這6人中選2人,求2人服務次數(shù)都在的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是函數(shù)的一個極值點.
(1)求;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若直線與函數(shù)的圖象有3個交點,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com