【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求證:①;
②曲線上的所有點(diǎn)都落在圓內(nèi).
【答案】(Ⅰ)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(Ⅱ)證明見解析.
【解析】
試題分析:(Ⅰ)求單調(diào)區(qū)間,只要求得導(dǎo)函數(shù),然后解不等式可得增區(qū)間,解不等式可得減區(qū)間;(Ⅱ)①要證不等式,只要證,因此可設(shè),求導(dǎo)后研究它的單調(diào)性,得最小值,若最小值不小于0,即證;②要證此命題就是要證不等式,為此利用①把放縮,由可得,從而有,代入可證得結(jié)論.
試題解析:(Ⅰ)函數(shù)的定義域?yàn)?/span>,由于,故只需要考慮的單調(diào)性
令 則
再令 則
當(dāng)時(shí),,則單調(diào)遞增,又,∴
則 ∴單調(diào)遞減 ∴ ∴
∴的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為
(Ⅱ)①令
則在單調(diào)遞減 ∴ 即
②由①得
∴
∴
故曲線上的所有點(diǎn)都落在圓內(nèi).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了參加師大附中第30屆田徑運(yùn)動(dòng)會(huì)的開幕式,高三年級(jí)某6個(gè)班聯(lián)合到集市購(gòu)買了6根竹竿,作為班期的旗桿之用,它們的長(zhǎng)度分別為3.8,4.3,3.6,4.5,4.0,4.1(單位:米).
(1)若從中隨機(jī)抽取兩根竹竿,求長(zhǎng)度之差不超過0.5米的概率;
(2)若長(zhǎng)度不小于4米的竹竿價(jià)格為每根10元,長(zhǎng)度小于4米的竹竿價(jià)格為每根元.從這6根竹竿中隨機(jī)抽取兩根,若期望這兩根竹竿的價(jià)格之和為18元,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線().
(1)證明:直線過定點(diǎn);
(2)若直線不經(jīng)過第四象限,求的取值范圍;
(3)若直線軸負(fù)半軸于,交軸正半軸于,△的面積為(為坐標(biāo)原點(diǎn)),求的最小值,并求此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的兩個(gè)焦點(diǎn)分別為,且橢圓C過點(diǎn)P(3,2).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)與直線OP平行的直線交橢圓C于A,B兩點(diǎn),求△PAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,圓的方程為.
(Ⅰ)寫出直線的普通方程和圓的直角坐標(biāo)方程;
(Ⅱ)若點(diǎn)的直角坐標(biāo)為,圓與直線交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為選拔參加“全市高中數(shù)學(xué)競(jìng)賽”的選手,某中學(xué)舉行了一次“數(shù)學(xué)競(jìng)賽”活動(dòng).為了了解本次競(jìng)賽學(xué)生的成績(jī)情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為分)作為樣本(樣本容量為)進(jìn)行統(tǒng)計(jì).按照的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在的數(shù)據(jù)).
(1)求樣本容和頻率分布直方圖中的值并求出抽取學(xué)生的平均分;
(2)在選取的樣本中,從競(jìng)賽成績(jī)?cè)?/span>分以上(含分)的學(xué)生中隨機(jī)抽取名學(xué)生參加“全市中數(shù)學(xué)競(jìng)賽”求所抽取的名學(xué)生中至少有一人得分在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且.
(1)求數(shù)列的通項(xiàng)公式,并寫出推理過程;
(2)令,,試比較與的大小,并給出你的證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)將100名高二文科生分成水平相同的甲、乙兩個(gè)“平行班”,每班50人.陳老師采用A,B兩種不同的教學(xué)方式分別在甲、乙兩個(gè)班進(jìn)行教改實(shí)驗(yàn).為了了解教學(xué)效果,期末考試后,陳老師對(duì)甲、乙兩個(gè)班級(jí)的學(xué)生成績(jī)進(jìn)行統(tǒng)計(jì)分析,畫出頻率分布直方圖(如下圖).記成績(jī)不低于90分者為“成績(jī)優(yōu)秀”.
(Ⅰ)根據(jù)頻率分布直方圖填寫下面2×2列聯(lián)表;
甲班(A方式) | 乙班(B方式) | 總計(jì) | |
成績(jī)優(yōu)秀 | |||
成績(jī)不優(yōu)秀 | |||
總計(jì) |
(Ⅱ)判斷能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為:“成績(jī)優(yōu)秀”與教學(xué)方式有關(guān)?
附:.
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com