【題目】已知是函數(shù)的一個(gè)極值點(diǎn).

(1)求;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)若直線與函數(shù)的圖象有3個(gè)交點(diǎn),求的取值范圍.

【答案】(1);(2)單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;(3).

【解析】

試題分析:(1)先求導(dǎo),再由是函數(shù)的一個(gè)極值點(diǎn)即求解(2)由(2)確定,再由求得單調(diào)區(qū)間(3)由(2)知,內(nèi)單調(diào)增加,在內(nèi)單調(diào)減少,在上單調(diào)增加,且當(dāng)時(shí),,可得的極大值為,極小值為,再由直線與函數(shù)的圖象有個(gè)交點(diǎn)則須有求解.

試題解析:(1)因?yàn)?/span>,

所以,因此

(2)由(1)知,

,

當(dāng)時(shí),,

當(dāng)時(shí),,

所以的單調(diào)增區(qū)間是,

的單調(diào)減區(qū)間是

(3)由(2)知,內(nèi)單調(diào)增加,在內(nèi)單調(diào)減少,在上單調(diào)增加,且當(dāng)時(shí),

所以的極大值為,極小值為,

因此

所以在在三個(gè)單調(diào)區(qū)間直線的圖象各有一個(gè)交點(diǎn),當(dāng)且僅當(dāng)

因此,的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且.

(1)求數(shù)列的通項(xiàng)公式,并寫出推理過程;

(2)令,,試比較的大小,并給出你的證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】汽車廠生產(chǎn)三類轎車,每類轎車均有舒適型和標(biāo)準(zhǔn)型兩類型號(hào),某月的產(chǎn)量如下表:(單位:輛). 按類用分層抽樣的方法在這個(gè)月生產(chǎn)的轎車中抽取50輛,其中有類轎車10輛.

(1)求的值;

(2)用分層抽樣的方法在類轎車中抽取一個(gè)容量為5的樣本,從中任取2輛,求至少有1輛舒適型轎車的概率;

(3)用隨機(jī)抽樣的方法從類舒適型轎車中抽取8輛,經(jīng)檢測(cè)它們的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把這8輛轎車的得分看成一個(gè)總體,從中任取一個(gè)數(shù),求該數(shù)與樣本平均數(shù)之差的絕對(duì)值不超過0.5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的三棱錐中,底面分別是的中點(diǎn).

1求證:平面

2,求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為坐標(biāo)原點(diǎn),對(duì)于函數(shù),稱向量為函數(shù)的伴隨向量,同時(shí)稱函數(shù)為向量的伴隨函數(shù).

(Ⅰ)設(shè)函數(shù),試求的伴隨向量

(Ⅱ)記向量的伴隨函數(shù)為,求當(dāng)時(shí)的值;

由(Ⅰ)中函數(shù)的圖像縱坐標(biāo)不變橫坐標(biāo)伸長(zhǎng)為原來的倍,再把整個(gè)圖像向右平移個(gè)單位長(zhǎng)度得到的圖像已知 ,問在的圖像上是否存在一點(diǎn),使得.若存在,求出點(diǎn)坐標(biāo);若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2-2(a+1)x+2alnx

(1)若a=2. 求f(x)的極值. (2)若a>0. 求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且直線是函數(shù)的一條切線.

(1)求的值;

(2)對(duì)任意的,都存在,使得,求的取值范圍;

(3)已知方程有兩個(gè)根,若,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),求函數(shù)的極小值;

(Ⅱ)當(dāng)時(shí),過坐標(biāo)原點(diǎn)作曲線的切線,設(shè)切點(diǎn)為,求實(shí)數(shù)的值;

(Ⅲ)設(shè)定義在上的函數(shù)在點(diǎn)處的切線方程為 ,當(dāng)時(shí),若內(nèi)恒成立,則稱為函數(shù)的“轉(zhuǎn)點(diǎn)”.當(dāng)時(shí),試問函數(shù)是否存在“轉(zhuǎn)點(diǎn)”.若存在,請(qǐng)求出“轉(zhuǎn)點(diǎn)”的橫坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人玩一種游戲,每次由甲、乙各出1到5根手指頭,若和為偶數(shù)算甲贏,否則算乙贏.

(1)若以A表示和為6的事件,求P(A).

(2)這種游戲規(guī)則公平嗎?說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案