【題目】已知數(shù)列的前項和為,且.

(1)求數(shù)列的通項公式,并寫出推理過程;

(2)令,,試比較的大小,并給出你的證明.

【答案】;(,證明見解析.

【解析】試題分析:()由題意可根據(jù)數(shù)列通項與前項和之間的關系來進行求解,即當時,;當時,,這時可得到的關系式,根據(jù)關系式的特點,可通過構造換元,令,從而得出數(shù)列是等差數(shù)列,先求出數(shù)列的通項,再求出數(shù)列的通項;()根據(jù)數(shù)列的特點可利用錯位相減法求出,接著利用作差法進行比較,根據(jù)差式的特點這里可采用數(shù)學歸納法進行猜想證明,詳見解析.

試題解析:()在中,令,可得,即

時,,

,即,

,則,即當時,,

,數(shù)列是首項和公差均為1的等差數(shù)列.

于是

)由()得,

所以,

①-②

,則

于是只要比較的大小即可,

1)當時,,此時,即,

2)猜想:當時,,下面用數(shù)學歸納法證明:

時,不等式成立;假設時,不等式成立,即;

則當時,

所以當時,不等式成立,

可知,當時,成立,

于是,當時,,即

另證:要證,只要證:,只要證:,

由均值不等式得:,

所以,于是當時,,即

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中為常數(shù),為自然對數(shù)的底數(shù).

1)當時,求的最大值;

2)若在區(qū)間上的最大值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的兩個焦點分別為,且橢圓C過點P3,2

求橢圓C的標準方程;

與直線OP平行的直線交橢圓C于A,B兩點,求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為選拔參加“全市高中數(shù)學競賽”的選手,某中學舉行了一次“數(shù)學競賽”活動.為了了解本次競賽學生的成績情況,從中抽取了部分學生的分數(shù)(得分取正整數(shù),滿分為分)作為樣本(樣本容量為)進行統(tǒng)計.按照的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出了得分在的數(shù)據(jù)).

(1)求樣本容和頻率分布直方圖中的值并求出抽取學生的平均分;

(2)在選取的樣本中,從競賽成績在分以上(含)的學生中隨機抽取名學生參加“全市中數(shù)學競賽”求所抽取的名學生中至少有一人得分在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,且.

(1)求數(shù)列的通項公式,并寫出推理過程;

(2)令,試比較的大小,并給出你的證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某城市有一塊半徑為40 m的半圓形綠化區(qū)域以O 為圓心,AB為直徑,現(xiàn)計劃對其進行改建.在AB的延長線上取點D,OD=80 m,在半圓上選定一點C,改建后的綠化區(qū)域由扇形區(qū)域AOC和三角形區(qū)域COD組成,其面積為S m2.設∠AOCx rad.

1寫出S關于x的函數(shù)關系式Sx,并指出x的取值范圍;

2試問∠AOC多大時,改建后的綠化區(qū)域面積S取得最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學將100名高二文科生分成水平相同的甲、乙兩個“平行班”,每班50人.陳老師采用A,B兩種不同的教學方式分別在甲、乙兩個班進行教改實驗.為了了解教學效果,期末考試后,陳老師對甲、乙兩個班級的學生成績進行統(tǒng)計分析,畫出頻率分布直方圖(如下圖).記成績不低于90分者為“成績優(yōu)秀”.

(Ⅰ)根據(jù)頻率分布直方圖填寫下面2×2列聯(lián)表;

甲班(A方式)

乙班(B方式)

總計

成績優(yōu)秀

成績不優(yōu)秀

總計

(Ⅱ)判斷能否在犯錯誤的概率不超過0.05的前提下認為:“成績優(yōu)秀”與教學方式有關?

附:.

P(K2k)

0.25

0.15

0.10

0.05

0.025

k

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知以點A(-1,2)為圓心的圓與直線l1x+2y+7=0相切.過點B(-2,0)的動直線l與圓A相交于MN兩點,QMN的中點,直線ll1相交于點P.

(1)求圓A的方程;

(2)當|MN|=2時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2-2(a+1)x+2alnx

(1)若a=2. 求f(x)的極值. (2)若a>0. 求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習冊答案